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Abstract

Some exactly solvable models for QCD like the Gross-Neveu model in (1 + 1) dimensions
exhibit a crystal phase that becomes stable for large baryon chemical potential. Inspecting
for the generality of this effect I investigate if a similar topological crystal may occur in
higher dimensions and in QCD, respectively. Prior research using an unbiased finite-mode
approach obviated the need for a specific functional ansatz for the condensate. This allowed
to examine if the phase diagram of the Gross-Neveu model in (3+1) dimensions shows an
emergent crystalline phase for small chemical potential. However, towards high density,
this phase becomes unstable such that other ansätze might become favourable. To this
end, I propose to expand the fermion fields and the inhomogeneous condensate in terms of
Daubechies wavelet bases. First, analytically known results for (1+1) dimensional models
(such as the Gross-Neveu model) are reproduced and compared within the pseudoparticle
approach. Eventually, the same procedure is extended to higher dimensions.
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Chapter 1

Introduction and Motivation

The crux of Quantum Chromodynamics (QCD) as a core part of the Standard Model
(SM) regarding strong interaction between particles, remains in its lacking of low energy
solutions. In order to investigate the theory at high energy, asymptotic freedom allows to
make use of perturbative techniques with the coupling constant approaching zero. How-
ever, this does not hold at the other end of the energy spectrum where one has to revert to
non-perturbative methods due to a large coupling constant. Low temperature QCD (below
about 1 GeV) is believed to predict interesting phenomena as confinement. Fundamental
degrees of freedom (d.o.f.) are quarks and gluons which constitute only colour-neutral
composite particles. Only these bound states like baryons, mesons or even glueballs are
expected to be observed. In turn nuclear physics describes the interaction between ex-
actly these baryons namely protons and neutrons resulting from the residual strong force
among their components. In pursuit of exploring this regime dominated by events con-
cerning atomic nuclei, QCD offers all essential tools, provided we omit electromagnetic
and electroweak forces.
We are interested in QCD in environments of high baryon density ρB and/or high tem-
perature T . Under these extreme conditions we keep the theory at equilibrium and relate
to thermodynamic observables. Mathematically the quantity that encompasses all the
information is the grand canonical partition function Z(µB, T ) which connects the baryon
density ρB to the chemical potential µB. At finite temperature this means that eventually
the phase diagram in the (µB, T )-plane becomes non-trivial. We sketch the conjectured
diagram in Fig. 1.1. The partition function Z is obtained in the path integral formalism
of QCD and in general poses an untenable task when calculating it from first principle.
Only in the two limiting cases of high and low baryon density with negligible quark masses
(chiral limit) QCD becomes analytically tractable to some extent.

An essential feature of the conjectured phase diagram of QCD is the existence of a
confined phase i.e. a hadronic phase for low chemical potential and temperature. When
increasing the temperature one encounters a first order transition and a deconfined phase
of Quark Gluon Plasma (QGP) in accordance with high energy (perturbative) QCD. On
the other hand, at low temperature and higher baryon chemical potential nuclear matter
exists around the mass of the proton µB = O(mp = 1 GeV). Furthermore, at ultra high
baryon densities a colour-flavour locked (CFL) phase resembling a superfluid (like cold
nuclear matter) with broken chiral symmetry (c.f. Hadronic Gas) emerges. Interestingly,
this sector of the theory can be understood rigorously. As µB becomes large the coupling
decreases and observables can be computed from first principles. This is the upper limit
in µB where the partition function Z can be calculated at least to leading order [1].
However, the focus of this thesis lies in the regime of a speculated phase boundary at
intermediate baryon densities where the temperature is kept low. The point is that if the
CFL terrain extends all the way down to nuclear matter we would already have full under-
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Fig. 1.1: Schematic outline of the conjectured QCD phase diagram featuring a hadronic, QGP, colour
superconducting phases (non-CFL, CFL) as well as a first order deconfinement transition ending in the
QCD critical endpoint.

standing of the phenomena therein. Currently very little is known about the existence and
nature of this phase denoted as non-CFL because perturbative techniques are defeated by
a high valued coupling constant as mentioned before. Ideally a non-perturbative option
would be to revert to lattice QCD and conduct a brute-force Monte-Carlo simulation of
the QCD path integral. Unfortunately due to the sign problem [2], standard algorithms
tackling the intermediate density region are ruled out.

The remaining non-perturbative gap under these conditions urges towards a tradeoff
by considering alternative i.e. effective models. These inherit as many features of the orig-
inal theory as possible - especially chiral symmetry. Therefore, different versions regarding
either chiefly hadronic or quark degrees of freedom have been proposed. During the study
in this thesis we restrict ourselves to the latter option among which the Gross-Neveu (GN)
model [3] and the Nambu-Jona-Lasinio (NJL) model [4, 5, 6] with four-fermi interaction
are most prominent. Their uniting property, chiral symmetry breaking (χSB), gives rise
to a chiral condensate σ which is equivalent to the quark-antiquark expectation value in
quark constituent models 〈ψ̄ψ〉.
In the large Nf limit, with Nf -the number of fermion flavours, one determines the con-
densate via minimisation of the effective action. A first naive attempt includes a spatially
homogeneous condensate. The phase structure of the GN model in (1+1) dimensions was
already determined in 1985 [7] but was hard to reconcile with the known baryon spec-
trum. Only in 2000 after trading translational invariance for an inhomogeneous conden-
sation σ = σ(x) this issue was analytically resolved utilising Jacobi elliptic functions [8].
Motivated through the gaseous hadronic phase at low density, the revised phase diagram
then included a soliton crystal phase built from baryons [9] in which the condensate as-
sumed kink-solutions with wavelengths inversely proportional to the baryon density. Con-
sequently the transitions between all three, the massive, crystal and massless matter phase
were of second order.
Knowing that the GN model already provides a wide range of QCD-like properties, studies
conjectured that an equivalent behaviour could also be found in QCD non-CFL phases
using three dimensional models like the NJL model, respectively [10]. The significance
of this argument originating from (1 + 1) dimensional models is especially noted when
considering high density (3 + 1)d QCD which then naturally becomes a (1 + 1)d theory
[11] when translation invariance is broken in one spatial direction only.
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Among numerous seemingly straightforward attempts to establish an unbiased univer-
sal algorithm independent of functional ansätze to evaluate chiral condensates at non-zero
temperature and chemical potential, any practical realisation is subject to high compu-
tational costs. Generally one employs a condensate only dependent on a single spatial
coordinate i.e. σ = σ(x3) which, discretised by use of lattice regularisation, produces the
GN model correctly [12]. Nevertheless, as an ultimate goal we aim to reduce the degrees
of freedom in the parameter space of the condensate and the fermion fields. To this end,
studies propose usage of special basis functions localised in space and time also known as
the pseudoparticle approach, which will serve as the main ingredient on our search for a
crystal phase in QCD. We will expand both the chiral condensate and fermion functions in
terms of plane waves [13], B-Splines [14] and eventually conduct a phase boundary deter-
mination adopting wavelets. As an orthonormal basis with compact support and very good
approximation of not too heavily oscillating functions their distinct advocates in applied
mathematics are Daubechies wavelets [15] that we mostly target as possible candidates.
The search for a reliable numerical procedure to tackle also totally spatially inhomoge-
neous condensation without restrictions on the condensate ansatz triggered investigations
leading to this thesis. We aim to successfully implement such a general method to study
inhomogeneous condensation and give new insight on non-perturbative ntermediate den-
sity QCD. In addition, this permits to also verify hypothesised properties and shapes of
condensates like chiral density waves (CDW) [16, 10].

We organise the thesis by classifying quark-based effective models in Ch. 2 according to
QCD related features, symmetries and formulations. In Ch. 3 the pseudoparticle approach,
possible candidate functional bases and nomenclature are introduced in order to set the
stage for regularising the (1 + 1)d GN model in Ch. 4. Additional focus lies on unbiased
numerically determined phase diagrams investigating inhomogeneous condensation. Even-
tually, Ch. 5 is devoted to the same approach adapted for the three dimensional GN model
reconstructing the phase transition between constant σ and spatially inhomogeneous σ(x)
at high density. Finally, we draw conclusions and devise possible improvements based on
our results in Ch. 6 followed by an outlook on applications of wavelets in Quantum Field
Theory.
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Chapter 2

Classification of Quark-Based

Effective Models

As argued in the introduction we exploit features of effective QCD toy models as an
alternative non-perturbative method in order to investigate intermediate density regions
of the phase diagram. We restrict ourselves only to quark degrees of freedom such that
gauge fields are neglected for the remainder of the thesis. Also the models are studied at
zero bare quark mass i.e. in the chiral limit.
Therefore, in this chapter we recall essential concepts of these simplified continuum models
that exhibit inhomogeneous condensation. Including necessary augmentations towards
QCD, the most important Lagrangians for both (1+1) as well as (3+1) dimensional models
are presented. At this point the Euclidean path integral as a quantisation prescription is
proposed

〈O〉 = 1

Z

∫

Dψ̄DψDφO
[
ψ̄, ψ, φ

]
e−S[ψ̄,ψ,φ], (2.1)

Z =

∫

Dψ̄DψDφ e−S[ψ̄,ψ,φ] (2.2)

for observables O and the partition function Z. Here the field φ is an arbitrary bosonic
field like the non-abelian gauge field in QCD or simply the chiral condensate φ → σ ∼
〈
ψ̄ψ
〉
of the Gross-Neveu model (cf. Sec. 2.1). Focusing on theories exclusively built from

constituent massless quarks m0 = 0 we will encounter so-called Q-operators which we will
refer to as enhanced Dirac operators. These are very similar to the pure Dirac operator
D = /∂ except for an additional bosonic potential V (φ)

Q = /∂ + V (φ) = γi∂i + γ0(∂0 + µ) + V (φ) (2.3)

Also the bosonic fields φ enter in this yet general bosonic term

Q = /∂ + γ0µ
︸ ︷︷ ︸

Dirac operator

+ V (φ).
︸ ︷︷ ︸

bosonic potential

(2.4)

The affixed baryon chemical potential µ (dropping the subscript B) is introduced along
the temporal derivative and coupled to the quark charge µB = Nfµq.

In the follow-up different regularisation schemes are proposed to implement further
calculations and determine the shape of σ in subsequent chapters. The main ingredient is
given by the effective action after transforming away the prevailing four-Fermi interactions.
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2.1. Gross-Neveu Models

2.1 Gross-Neveu Models

Exploratory models at low dimensionality often already feature a genuine set of QCD-like
properties. Models proposed by Gross and Neveu (GN) [3, 8, 7, 17] enjoy either discrete
or continuous chiral symmetry. We will elucidate both in the subsequent sections.

2.1.1 Chirally discrete GN model in 1+1 dimensions

Yet the discrete-symmetry version of the (1 + 1)d GN model (GN2) constitutes a four-
fermion interaction theory with a single flavour, Nc colour-degenerate massless quarks.
Since the GN model is not a gauge theory, colours can be regarded as ”flavours”. To
avoid ambiguities we refer to nf as the number of flavours and its level of degeneracy
N = Nc as colours. In the single flavour case Nf = 1 these are often used interchangeable
N = Nf = Nc.
in pursuit of features existing in QCD the model’s most interesting regime - the large-N
limit - displays asymptotic freedom, dynamical chiral symmetry breaking and its restora-
tion, dimensional transmutation, and meson and baryon bound states. Stating the model
in euclidean space time one obtains the Lagrangian density,

LGN =
N∑

a=1

ψ̄a /∂ ψa − g2

2

[
N∑

a=1

ψ̄aψa

]2

, (2.5)

with fundamental variables {ψa}na=1 of n massless two spin component fermion fields in
(1 + 1)d. subsequently, products and sums over colour indices a are implied and thus

omitted. We observe from the kinetic term in eq. (2.5) the dimension of ψa ∼ [L]−
1
2 which

renders the four-fermion term two-dimensional and g dimensionless. The latter induces
renormalisability upon the interaction term.
corresponding to the Clifford algebra in euclidean space where Dirac matrices fulfill {γµ, γν} =
2δµνI2 there exists a unique two-dimensional irreducible representation Cℓ1,1(R) ∼= R(2) ∼=
Cℓ0,2(R) isomorphic to the ring of two-by-two matrices over the real numbers. The two
gamma matrices are given in terms of σi pauli matrices γ0 = σ1 and γ1 = σ3, with the
additional γ5 = γ0γ1 = −iσ2 implying γµ = γ†µ = γ∗µ and {γ5, γµ} = 0.

Next, we discuss the regularisation of the model by defining the action from the La-
grangian density in eq. (2.5)

SGN

[
ψ̄, ψ

]
=

∫

dx dτ LGN (2.6)

and its partition function Z

Z =

∫
(

n∏

a=1

Dψ̄aDψa
)

e−S . (2.7)

an efficient means to replace the four-fermion coupling (
∑N

i=1 ψ̄
aψa)2 is a Hubbard-Stratonovich

transformation (cf. sec. A.1) which has no effect on physics. We wish to introduce a scalar
auxiliary bosonic field, which we shall designate by σ(x). The summation over colour a
renders σ a singlet under O(2n). Effectively the insertion of unity

I =

∫

Dσ exp
{

−
∫

dx dτ

[
1√
2g
σ − g√

2
ψ̄aψa

]2
}

. (2.8)

disposes of quartic terms in ψa. For simplicity the operator Q from (2.4) is altered using
the bosonic field φ→ σ and potential v(φ) → σ

q = /∂ + γ0µ+ σ , (2.9)
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2. Classification of Quark-Based Effective Models

which will be used when appropriate from now on. also the classical equations of motion
and the Lagrangian (2.5) are recovered when integrating out σ

Z =

∫

Dσ
(
Dψ̄aDψa

)
exp

{

−SGN −
∫

dx dτ

[
1√
2g
σ − g√

2
ψ̄aψa

]2
}

=

∫

Dσ
(
Dψ̄aDψa

)
exp

{

−
∫

dx dτ

[
1

2g2
σ2 + ψ̄aQψa

]}

. (2.10)

we are now able to write down an effective action

Seff[σ] =

∫

dx dτ

(
1

2g2
σ2 + ψ̄aqψa

)

. (2.11)

Besides, fermionic degrees of freedom ψa can also be bilinearly integrated out using
∫
Dψ̄Dψ exp

{
−ψ̄aψ

}
= det a via the functional determinant det(.)

∫

Dψ̄aDψa exp
{

−
∫

dx dτ
(
ψ̄a ( /∂ + γ0µ)ψ

a + σψ̄aψa
)
}

= [det ( /∂ + γ0µ+ σ)]N , (2.12)

to recover an effective action solely dependent on even powers of the auxiliary field σ
because of vanishing traces over odd γ matrices vanish. Especially also as a result of the
change in sign of σ due to γ in eq. (2.17)

Z =

∫

Dσ [detQ]N exp

{

−
∫

dx dτ
1

2g2
σ2
}

=

∫

Dσ exp {n log (detQ)} exp
{

−
∫

dx dτ
1

2g2
σ2
}

=

∫

Dσ exp
{

−
∫

dx dτ
1

2g2
σ2 +N log detQ

}

. (2.13)

with the Dirac operator in (2.9), the partition function gives rise to a restated effective
action (2.11) utilising the redefinition of the coupling constant eq. (2.21)

Seff[σ] =

∫

dx dτ Leff = N

{∫

dx dτ
1

2λ
σ2 − 1

2
log detQ†Q

}

. (2.14)

We already got ahead of the discussion by replacing the argument of the determinant in
(2.14)

(detQ)2 = det(Q†Q) ≥ 0. (2.15)

Remark 2.1 The identity (2.15) is only valid if detQ is real. To prove this assumption
one can check the eigenvalues λ of Q. For the Dirac operator Q there are only two pos-
sibilities when acting on its eigenfunction f(x) with eigenvalue α, namely (i) qf(x) = ( /
∂ + σ)f(x) = αf(x) or (ii) Qf(x) = ( /∂ + σ)f∗(x) = α∗f∗(x). This signifies that the λ
come in complex conjugate pairs or are real in the first place such that the determinant as
a product over diagonal elements itself remains real valued.

Remark 2.2 Naturally the product of Dirac operators Q†Q will be hermitian

Q†Q =
(

Q†Q
)†

= Q†
(

Q†
)†

= Q†Q

such that the inequality of the right-hand side of (2.15) is fulfilled.
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2.1. Gross-Neveu Models

The salient point along this seemingly innocent mathematical change is its numerical
stability which will be elaborated in more detail below (cf. sec. 3.1.1). Certainly this is
only true for even n supported by

log detQ = Tr logQ. (2.16)

Due to its O(2n)×γ global symmetry (2.5) is invariant under the discrete γ5 transformation

γ : ψa → γ5ψ
a , ψ̄a → −ψ̄aγ5 , σ → −σ. (2.17)

Note that ψ̄a = ψa†γ0 → ψa†γ5γ0 = −ψ̄aγ5. However, the mass term will transform as

mψ̄aψa → −mψ̄aψa . (2.18)

Hence, the theory respecting chiral symmetry does not allow a mass term. We classify
γ as Z2 symmetry as twice the action of (γ5)

2 = 1 is trivial. Obviously the Lagrangian
(2.5) is unaffected by a U(n) transformation. On the other hand, the prevalent continuous
global symmetry is O(2n) for which U(n) is a subgroup [9]. This is the isospin symmetry
and responsible for rotation in the space of colour degenerate massless flavours ψa. This
can be seen when expanding

ψa = ξa1 + iξa2 (2.19)

into hermitian two-component spinors ξ1,2. This signifies that {ξa1,2}na=1 is a 2n component
vector with apparent o(2n) symmetry

ξ(x, τ) = rξ(x, τ) , r ∈ O(2n) . (2.20)

so far we have not given any details on the n degeneracy which, however, plays an essential
role in the discrete (1 + 1)d GN model. For 1 < n < ∞ its solution is neither trivial nor
analytically tractable. Nevertheless, for finite n one of the most pressing QCD connections,
chiral symmetry breaking, is still intact. In fact, the discrete Z2-symmetry in γ forbids
the existence of massless Goldstone bosons but the theory still exhibits χSB for t = 0 at
all

λ = g2N (2.21)

fixed with λ the t’hooft coupling. This does not contradict the Mermin-Wagner-Coleman
theorem [18, 19] because Z2 is discrete and not continuous. However, χSB with mass gen-
eration becomes non-trivial and dynamical but was shown to exist by Gross and Neveu [3].
A non-vanishing σ ∼

〈
ψ̄ψ
〉
as the vacuum expectation value (VEV) σ0 = 〈0|σ|0〉 = 〈σ〉

then yields a non-zero fermion mass.
the failure of dynamical symmetry breakdown to occur for any finite n in (1 + 1)d was
demonstrated [20]. The core issue concerns the logarithmic 2d euclidean massless σ-boson
propagator which favours cheap long-range fluctuations [19] destroying any sort of order-
ing. Only for diverging number of fermions spontaneous mass generation resurfaces when
suppressing fluctuations sufficiently such that the interaction term equals a constant for
large-N limits

〈
ψ̄(x)ψ(x)ψ̄(y)ψ(y)

〉
= 〈σ(x)σ(y)〉 ∼ 1 +

1

n
log |x− y|+O(1/n2) . (2.22)

Following these arguments, we consider the large-N limit from this point on such that an
analytic solution is possible. From the fact that Seff ∝ N counting powers in N becomes
simple. As a result the new partition function

Z ∝
∫

Dσ e−Seff[σ] , (2.23)

7



2. Classification of Quark-Based Effective Models

,

Fig. 2.1: Diagrams in the 1/N expansion of the Gross-Neveu effective Lagrangian Leff in leading order of
the large-Nf expansion based on Feynman rules in sec. A.2. With dashed and solid lines corresponding to
the auxiliary field σ and the fermion field ψ, respectively.

is directly dominated by a field saddle point configuration where Seff becomes minimal
with respect to σ and admits the standard gap equation (cf. sec. 2.1.2) meaning

lim
N→∞

Seff[σ,N ] = inf
σ
Seff[σ,N ] , (2.24)

and its solution being exact for large-N . Moreover, σ is a large-N invariant and in min-
imum acquired in eq. (2.24) it assumes the role of a fermionic mass term resulting from
perturbations. At the beginning of this section we hinted that the GN model exhibits
renormalisation. To this end, we inspect the leading order (LO) diagrammatic contribu-
tion in the 1/N expansion equal to Leff[σ, λ, n] = N L̃eff[σ, λ] depicted in Fig. 2.1. To delve
into answering this question we compute the β-function by dimensional regularisation of
the integral in eq. (2.12) yielding in momentum space

∫

Dψ̄aDψa exp
{

−
∫

dx dτ ψ̄a ( /∂ + σ)ψa
}

=exp

{∫
d2k

(2π)2
n log

(
k2 + σ2

)
}

. (2.25)

Naturally the Fourier transformation (2.25) has this simple form only if σ is translationally
invariant. In arbitrary dimensions d the integrand is restated in the limit of d = 2− ǫ and
ǫ→ 0 employing the γ-function [21]

∫
ddk

(2π)2
n log

(
k2 + σ2

)
=

N

(4π)
d
2

2

d
γ(1− d

2
)(σ2)

d
2

limǫ→0=
nσ2

4π

(
2

ǫ
− γ + log(4π)− log(σ2) + 1

)

. (2.26)

as the low energy regime, that is the infrared (IR) behaviour, poses most interest we place
a momentum cut-off k2 ≤ λ2. This renders the σ2 ∼ [m]2 argument of the logarithm on
the right-hand side dimensionless again. Together with eq. (2.14) the effective potential

equipped with a renormalisation condition at ∂2Leff

∂σ2

∣
∣
σ=µ

= 1 yields

Leff[σ] = n

[
σ2

2λ2
+

1

4π
σ2
(

log
σ2

µ2
− 3

)]

. (2.27)

If we carry out the minimisation one finds that the effective potential admits global minima
at σ = ±σ0 = ±µe1−π

λ . Therefore, the discrete γ-symmetry is broken and initially massless
fermions realise a mass equal to σ0 to lo. Eventually, we make use of the renormalisation
group equation [22] to retrieve the β-function

β(λ) = −n− 1

2π
λ3 +O(λ5) . (2.28)

Here the negative sign of the leading term in (2.28) indicates an asymptotically free theory
where the coupling vanishes towards high momenta. We also observe that (2.27) is now

8



2.1. Gross-Neveu Models

independent of the cut-off λ due to the renormalisation condition at σ = σ0. This result
clearly shows the renormalisability of the theory.

Concluding a rather detailed description of a very simple toy model in the pursuit
of QCD properties, we have already assembled enough similarities towards first finite
temperature and density investigations.

2.1.2 The gap equation

As we argued before eq. (2.24) introduces the gap equation as the condition

δSeff[σ]

δσ(x)
= 0 , (2.29)

that is responsible for minimising the effective action. In general eq. (2.29) yields a self
consistency equation for the fermion condensate.
in order to illustrate this idea we start from the effective action (2.14) in the large-N limit
with a single n-degenerate flavour fermion. We are looking for the field configuration cor-
responding to its extremum. As long as we assume a spatially inhomogeneous condensate
σ(x) we obtain a system of non-linear functional differential equations

∂σ(x)Seff

n
=
σ(x)

λ
− ∂σ(x)Tr log[ /∂ + γ0µ+ σ(x)] = 0 , ∀x , (2.30)

where we applied eq. (2.16). For the time being the condensate is assumed to be transla-
tional invariant σ(x) = σ giving rise to

σ

λ
= ∂σTr log[ /∂ + γ0µ+ σ] . (2.31)

Eventually after transition to momentum space one ends up with a self consistency equa-
tion additionally to the trivial solution where σ = 0

1

λ
=

∫
d2k

(2π)2
2

k2 + σ2
for µ = 0, (2.32)

which is considered as the gap equation of the discrete GN2 model. Its solution with
respect to the fermion condensate gives rise to the phase structure for finite µ and T . We
will only focus on this gap equation approach. Other possibilities would involve solving
e.g. Hartree-Fock equations.

Before proceeding to higher dimensions we briefly present a more general candidate
theory in (1 + 1) dimensions.

2.1.3 Chiral χGN model

For the first augmentation of the discrete GN case we present the following euclidean
Lagrangian known as the chiral GN model (χGN)

LχGN = ψ̄a /∂ ψa − g2

2

[(
ψ̄aψa

)2
+
(
ψ̄aiγ5ψ

a
)2
]

. (2.33)

With an extra pseudoscalar term ψ̄aiγ5ψ
a. The Lagrangian density in eq. (2.33) deals

with invariance under Abelian chiral symmetry U(1)L × U(1)R which can be rewritten
as U(1)V × U(1)A via L ± R = V/A under axial (A) and vector (V) symmetries. The
crucial difference to the prior discussed discrete GN model is that for χGN the discrete

9



2. Classification of Quark-Based Effective Models

symmetry is enhanced to a continuous symmetry group UA(1). Fermion fields under this
transformation are invariant

UV (1) : ψa → eiαψa , ψ̄a → −eiαψ̄a (2.34)

ua(1) : ψa → eiαγ5ψa , ψ̄a → eiαγ5ψ̄a . (2.35)

It is pivotal to understand that due to the continuous symmetry (2.34) now also a massless
Goldstone boson appears. In two dimensions correlation functions of massless particles
are infrared divergent. Thus, in contrast to the discrete GN model chiral symmetry is
restored at any finite temperature in two dimensions. On the other hand, the Mermin-
Wagner-Coleman theorem [18, 19] explicitly forbids the existence of Goldstone bosons in
(1 + 1)d. At leading order, however, one observes the aforementioned massless π field.
Does this contradict the theorem?
in fact one has to take into account all orders in the large-n expansion. Then no Goldstone
bosons are present. Thus, in the attempt of an analytic solution chiral symmetry breaking
only emerges at the limit of infinite fermions n→ ∞ suppressing other field configurations
that possibly would prohibit χSB.
furthermore, in this model condensation may not only occur for the scalar field σ but
also for a pseudoscalar field π that is related to the second term in brackets of (2.33) via
π ∼

〈
ψ̄iγ5ψ

〉
. The effective action is obtained in the same way as for the discrete GN

model (cf. sec. 2.1.1) by a Hubbard-Stratonovich transformation of the four-fermion terms

Seff[σ, π] = N

{∫

dx dτ
1

2λ

(
σ2 + π2

)
− 1

2
log det q†q

}

,

Z =

∫

DσDπ e−Seff[σ,π] , (2.36)

with the coupling λ (2.21). Consequently the enhanced Dirac operator Q from (2.4) is
varied adequately

Q = /∂ + γ0µ+ σ + iγ5π. (2.37)

With the effective actions eqs. (2.14) and (2.36) we have the necessary tools to investigate
GN models, start solving gap equations and determine their phase structures. We now
turn to the three dimensional Gross-Neveu model.

2.1.4 Chirally discrete GN model in 3+1 dimensions

As we will see for d > 2 a negative mass dimension of λ forbids perturbative renormalisa-
tion when considering the (3+1)d Gross-Neveu model (GN4). However, it is proven to be
renormalisable by an 1/N expansion and closely related to the Higgs-Yukawa type models
in the proximity of four dimensions [23]. We inspect the model with two four-component
continuum fermion flavours such that the Lagrangian (2.5) for the (1+1)d chirally discrete
case is altered.

Let us first continue with a power counting argument of fermion fields to justify non-
renormalisability in four space-time dimensions [3]. Since the fields ψa have dimension

[L]−
3
2 the interaction term in (2.39) has dimension [L]−6 compared to the Lagrangian

density L ∼ [L]−4. We keep g as the dimensionless coupling constant. However, the
interaction term requires a coupling constant of dimension [L]2 which we introduce via a
cut-off

g2

2
= gλ2. (2.38)

In the chiral limit we then obtain for the euclidean Lagrangian for Nf = 1 flavours with
degenerate Nc = n→ ∞ colours

LGN4
= ψ̄a /∂ ψa − g

(
ψ̄aψa

)2
(2.39)

10



2.1. Gross-Neveu Models

with the replaced dimensionful coupling g. The number of colours Nc is now finite and
for QCD it assumes Nc = 3 which we will use for the (3+ 1)d models. The corresponding
symmetry group SU (2)L × SU (2)R with UL ∈ SU (2)L and UR ∈ SU (2)R leaves the
Lagrangian (2.39) invariant

ψaL → ULψ
a
L , ψaR → URψ

a
R . (2.40)

Thus, the fermion functions ψaf are projected into left and right chiral components

ψa =

(
ψa1
ψa2

)

, ψaL = PLψ
a , ψaR = PRψ

a . (2.41)

A property of the vacuum is the dynamical fermion mass which we will call m∗
0 with

subscript 0 for the vacuum. The generation of m∗
0 gives rise to the gap equation (cf.

sec. 2.1.2)
m∗

0 = −g
〈
ψ̄aψa

〉
> 0 (2.42)

resulting from the Dirac equation for ψ(x). The chiral condensate is defined [24, 5] to be
constituent of field configurations ψ̄aψa and is an order parameter for dynamical χSB

σ =
〈
ψ̄aψa

〉
. (2.43)

In this case the effective mass m∗
0 and the condensate σ are translated into each other

in the vacuum σ0 = −m∗
0

g . The condensate σ in the mean field approximation takes the
form [5]

σ = −Nm∗
0I. (2.44)

At this point we clearly observe that the model is not renormalisable. The integral term
I results from the Dirac propagator

I = i

∫
d4k

(2π)4
2

k2 −m∗2
0

=

∫
d3k

(2π)3
1

√

k2 +m∗2
0

, (2.45)

then yields a divergent integral after carrying out the k0 integration on the right-hand side
which contributes the square root in the denominator.
the divergence originates from the closed quark loop contribution in the quartic interaction
term. The integral I is quadratically divergent and in order to compute meaningful results
one has to define a renormalisation scheme. The latter introduces a high-energy scale cut-
off λ with k2 < λ2. In contrast to the discrete GN2 model the integral I still depends
explicitly on λ after setting a renormalisation condition. Thus, for every λ we have to
deal with a different model. All remaining parameters also become finite. The cut-off
could then be implemented in (2.45). For finite density and temperature calculations
it is favourable to either use the Pauli-Villars scheme, proper time regularisation or the
three-momentum non-covariant cut-off [24].

First of all the latter has to be excluded when inspecting for inhomogeneous conden-
sation. Otherwise, as empirically found, kink-antikink solutions are never realised when
|k| is bounded by λ [25]. For the remainder of the discussion, we will then focus on the
Pauli-Villars scheme. For this regularisation one introduces a set of npv fictitious heavy
fermions of mass mk and constants ck

I =

∫
k2d|k|
2π2

npv∑

k=0

ck
√

k2 +m2
k

=

∫
k2d|k|
2π2




1

√

k2 +m∗2
0

+

npv∑

k=1

ck
√

k2 +m2
k



 , (2.46)
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2. Classification of Quark-Based Effective Models

where m0 = m∗
0 and c0 = 1 from the r.h.s. of (2.45). These remaining constants have

yet to be determined but their purpose is to render the integral finite. The standard
procedure [26] is to only include one cut-off λ which then appears in the expression for
the masses mk

m2
k = m∗2

0 + αkλ
2. (2.47)

with c0 = 1 and α0 = 0. In the limit |k| → ∞ the integrand of (2.46) can be evaluated by
taylor series

npv∑

k=0

ck
√

k2 +m2
k

=
1

|k|

[npv∑

k=0

ck −
1

2

m∗2
0

∑npv

k=0 ck + λ2
∑npv

k=0 αkck
|k|2 +O(|k|−4)

]

. (2.48)

This decomposition proves that only the first two terms in (2.48) are divergent when
integrated over. To circumvent this obstacle and eliminate these two terms we impose two
conditions on the auxiliary masses mk and therefore obtain

1 +

npv∑

k=1

ck = 0 (2.49)

npv∑

k=1

akck = 0 . (2.50)

The resulting integrand is then of order O(|k|−3) and therefore superficially convergent.
The choice of the number of Pauli-Villars fermions is still arbitrary but one is of course
interested in keeping this number low. Note, that for npv = 1 the corresponding α1

becomes trivial and mk = m0 = m∗
0 degenerate. Thus, the minimal choice is npv = 2

but their solutions are not unique. One popular option is c1 = 1, c2 = −2 where α1 = 2,
α2 = 1 [26]. Lastly, we transform away the four-fermion interaction with the resultant
effective action

Seff[σ] = n

{∫

d4x 2gσ2 − log det q†q
}

(2.51)

and its matching enhanced Dirac operator Q in four euclidean space-time dimensions

Q = /∂ + γ0µ+ σ . (2.52)

Now the renormalisation scheme is fully determined up to the parameters g and λ. Both
constants are fixed by demanding that a certain effective mass m∗

0 is realised. We will
comment on this in sec. 2.2.3. With these tools one can then proceed to solve the gap
equation.

2.2 NJL models

Finally, we dedicate the remainder of the chapter to the extremely successful phenomeno-
logical quark-meson model developed by Nambu and Jona-Lasinio (NJL) [4]. the model
includes chiral symmetry breaking and again a four fermion interaction as for the GN
models. For three dimensions, similar to the GN4 model, we have to deal with the non-
renormalisabiliy of this interaction term such that results depend on the choice of the
ultraviolet (UV) cut-off. However, the phase diagram should not depend on the specific
choice of λ unless the latter is very close to O(Tc) or O(µc).
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2.2. NJL models

2.2.1 Two flavour NJL2 model

In principle, one would have to take into account all six quark flavours when probing
the phase boundary of QCD. Their masses extend over a wide range which for a given
µ threshold permits to neglect those quark flavours of exceeding mass. Naturally, only
the two lightest quark flavours Nf = 2 are of interest when considering real world baryon
densities.

In this context, another extension, the NJL model in (1+1) dimensions (NJL2), involves
the same pseudoscalar structure as the χGN (cf. sec. 2.1.3) with the exception of further
pion combinations. In addition the model shows two flavours f = 1, 2

LNJL2
=

2∑

f=1

ψ̄af /∂ ψ
a
f −

g2

2

2∑

f=1

[(
ψ̄afψ

a
f

)2
+
(
ψ̄afτ iγ5ψ

a
f

)2
]

, (2.53)

each bearing a N = Nc colour degeneracy. Chiral symmetry is realised as in (3 + 1)d GN
model for Nf = 2 isospin degrees of freedom in eq. (2.40). The matrices τ j with j = 1, 2, 3
act on the Nf -dimensional isospin space. The effective action using λ from eq. (2.21)
assumes the form

Seff[σ,π] = n







∫

dx dτ
1

2λ



σ2 +
3∑

j=1

π2j



− 1

2
log detQ†Q






, (2.54)

with the corresponding Q-operator

Q = /∂ + γ0µ+ σ + iγ5

3∑

j=1

τjπj . (2.55)

In the following section we will see that the NJL2 model is the two-dimensional equivalent
to another model.

2.2.2 Two flavour NJL4 model

In (3 + 1) dimensions the euclidean Lagrangian of the NJL model (NJL4) is basically
equivalent to the aforementioned (1 + 1)d case with two flavours (2.53)

LNJL4
=

2∑

f=1

ψ̄af /∂ ψ
a
f − g

2∑

f=1

[(
ψ̄afψ

a
f

)2
+
(
ψ̄afτ iγ5ψ

a
f

)2
]

, (2.56)

except for the four-component two-flavour spinors and the redefinition of the coupling
constant g in (2.38). Symmetries of the model are coinciding with the NJL2 and GN4

models (2.40), respectively. Also the Lagrangian yields a quadratically divergent integral
contributions as in eq. (2.45). This obstacle is tackled in the same way as for the GN4

model using the Pauli-Villars renormalisation scheme for Nf = 2. The corresponding γ
matrices in four euclidean space-time dimensions are given by

γ0 =

[
I2 0
0 I2

]

, γi =

[
0 σi

−σi 0

]

, (2.57)

in addition to the euclidean correspondent γ5 = γ0γ1γ2γ3. We emphasise, that the NJL
model reduces to the corresponding two flavour GN model when assuming that only the
chiral condensate σ condenses and pion-like field combinations ψ̄afτ iγ5ψ

a
f are omitted.

following the transformations previously applied for the GN2 and NJL2 models we obtain
an effective action after trading the quartic interaction terms for bosonic auxiliary fields.
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2. Classification of Quark-Based Effective Models

For the NJL model in (3 + 1)d that bears the same structure with log-determinant as
before

Seff[σ] = N

{∫

d4x 2gσ2 − log detQ†Q
}

. (2.58)

And the Dirac operator Q in (2.55) adapted to four euclidean space-time dimensions.

2.2.3 Choice of parameters

As mentioned earlier, after regularisation we are left with two parameters, namely the
coupling g and the cut-off λ. These have to match with the physical quantity of the theory
- the pion-decay constant fπ. The latter has been measured from the decay π− → µ−+νµ
and amounts to fπ = 88MeV [27]. Furthermore, we demand that after fixing m∗

0 the
pion-decay constant fπ is consistent with the cut-off λ. In the Pauli-Villars regularisation
this can be calculated following [24]

f2π = −Ncm
∗2
0

4π2

npv∑

k=0

ck log

(
m2
k

m∗2
0

)

, (2.59)

with Nc = 3 as in QCD. The only remaining parameter is the coupling constant g which
we then infer by solving the gap equation (2.44). As usual the whole calculation is done
in the chiral limit where any bare quark mass is set to zero.

This concludes the survey on continuum quark-based effective QCD models. We are
now equipped with sufficiently many tools to solve the arising gap equations and handle
finite density and temperature calculations. Also, we need to leave the continuum de-
scription behind and focus on finitely many degrees of freedom in the fermion fields and
condensate.
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Chapter 3

Fermions in the Pseudoparticle

Approach

As we shall see, effective QCD models have served as the foundation when conducting
and implementing an unbiased numerical study. However, the goal is to leave behind the
continuum description and keep a limited amount of degrees of freedom. One obvious
choice is the reformulation of the theory on the lattice. This will suffice as a first approach
in Ch. 4 dedicated to regularisation schemes for the (1 + 1)d GN model.
The salient point of this chapter is the question if there are other methods than just
simple space discretisation to reduce these degrees of freedom. To this end, we introduce
the pseudoparticle approach as the fundamental framework on which we will build our
analysis. Its applications have been studied rigorously for bosonic cases like SU(2) Yang-
Mills theory [28, 29, 14] such that also an adaption to fermion fields was proposed by [30].

3.1 Pseudoparticle Basics

Starting from the path integral formalism, the defining principle of the pseudoparticle
approach is to numerically approximate fermion fields in (2.1) as a linear superposition of
finitely many pseudoparticles. Any other field configurations that cannot be represented
by this ansatz are disregarded.
In contrast to only spatially localised particles, pseudoparticles exhibit both space and
time localisation. The number of building blocks is then fixed through the aforementioned
decomposition

ψ(x) =
∑

j

ηjGj(x)
︸ ︷︷ ︸

j-th pseudoparticle

. (3.1)

Here we employed Grassmann spinors and pseudoparticle functions Gj which have finite
support in the space-time domain. The final step to translate the path integral (2.1) into
its pseudoparticle equivalent is to modify the measure. Thus, the integration over field
configurations is now restated by only considering pseudoparticle degrees of freedom such
that the fermionic measure becomes

∫

Dψ̄Dψ · · · =
∫



∏

j

dη̄jdηj



 . . . (3.2)

The relation between ψ and ηj is linear and invertible (3.1) such that the appearing

Jacobian after a change of coordinates is merely an irrelevant constant
∣
∣ ∂ψ
∂ηj

∣
∣ = const. In

the best case this constant is equal to 1 because of the localisation and orthogonality of the
Gj such that only diagonal elements contribute to the determinant. As a first approach, we
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3. Fermions in the Pseudoparticle Approach

elaborate on properties of pseudoparticle functions and how to convert previously defined
continuum effective actions (cf. Ch. 2) into the pseudoparticle formalism.
For generalisation, we will consider (d + 1) space-time dimensions keeping the spatial
dimensionality d arbitrary for now. In subsequent investigations we will specifically inspect
for situations of d ∈ {1, 3}. From now on the theories will be restricted to a box of temporal
extent L0 and correspondingly spatial volume of (L1)

d with periodic or anti-periodic spatial
boundary conditions. From [31] we know that fermions are actually anti-periodic in time
with period β = 1/T ∝ 1/L0 which then affects the nature of the pseudoparticle functions
at the temporal boundary

Gj(x0 + L0,x) = −Gj(x0,x). (3.3)

The effective action for all the theories introduced in Ch. 2 shows the same structure
including a bilinear fermion term and a bosonic scalar/pseudoscalar field φ as introduced
in (2.1) with its partition function Z

S[ψ̄, ψ, φ] =

∫

dd+1x
(
ψ̄Q(φ)ψ + L(φ)

)
. (3.4)

Recall that for the special case of the chirally discrete GN2 model the integration over
fermions was done explicitly for an effective action (cf. Sec. 2.1.1)

Seff[φ] =

∫

dd+1xL(φ)− log(det
〈
Gj |Q|Gj′

〉
). (3.5)

The matrix
〈
Gj |Q|Gj′

〉
is subject to the choice of the finite pseudoparticle basis and is

thus finite itself. In order to illustrate this, one classical example of Gj are eigenfunctions
of the Dirac operator Q. Principally, these are a set of plane waves which we will discuss
further in Sec. 4.3.
We aim to find a functional basis in order to reconstruct both fermion fields as well the
condensate(s). For this reason, we need to be able to model exactly the whole Hilbert
space H of L2(R), with inner product

〈f, g〉 =
∫

R

dx f(x)g(x) . (3.6)

Before we explicitly consider basis candidates we motivate a different regularisation pro-
cedure. Recall that we briefly mentioned this when retrieving the effective action in
Eq. (2.14). There we suggested a change (detQ)2 = detQ†Q provided that detQ ≥ 0
which was proven in Rem. 2.1 for enhanced Dirac Q operators of the form Q(φ) = /∂ + φ.
As previously argued this modification has important implications in the pseudoparticle
approach and is highly advantageous over the naive effective action (3.5).

3.1.1 Q†Q-Pseudoparticle-Regularisation

So far it has not gone unnoticed that the naive Q-type approach poses an immediate
problem. To make this issue more apparent we let the Dirac operator Q act on the
pseudoparticle basis functions Gj′ . Clearly this operation violates closure by permitting
functions outside the initial pseudoparticle function space span{Gn}, specifically

Gj(x) =
∑

k

aj,kGk(x) + hjHj(x) with 〈Gk, Hj〉 = 0 ∀j, k . (3.7)

When calculating matrix elements in the fermion matrix the effect of this decomposition
becomes critical as soon as the second part in (3.7) dominates (ii) the sum over Gk i.e.
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(i) |∑k aj,kGk(x)| ≫ |hj |

(ii) |∑k aj,kGk(x)| . |hj |

In other words, a substantial part of QGj namely hjHj is neglected due toHj ⊥ span{Gn}.
This reasoning becomes even more evident when diagonalising the fermion matrix

U †
j,k〈Gk|Q|Gk′〉Uk′,j′ = 〈G̃j |Q|G̃j′〉 = diag(µ1, µ2, . . . )j,j′ . (3.8)

Under these conditions Eq. (3.7) simplifies

QG̃j(x) = µjG̃j(x) + hjHj(x). (3.9)

This yields a problematic scenario in the limit ∃j |µj = 0 and hj 6= 0. By missing out on
the perpendicular part on the right-hand side of (3.9), G̃j suddenly becomes a zero mode
of Q yielding a zero determinant

det 〈Gk|Q|Gk′〉 =
∏

j

µj (3.10)

which due to log(0) = −∞ produces a diverging effective action (3.5). The existence of
such unphysical zero modes is not a unique property of a specific pseudoparticle candidate.
To demonstrate this let us first leave the continuum and move to box sizes of integer values
L ∈ N. To this end we analyse anti-periodic functions built from pseudoparticle functions
Fj with integer support

Gj(x) = F (x− j)− F (x− j + L) . (3.11)

The pseudoparticles Fj are supposed to be real F = F ∗ and confined to the computational
domain [0, L−1] such that F = 0 when x ≤ 0 and x ≥ L. Conversely resulting anti-periodic
pseudoparticles Gj also have integer support within the interval [0, L − 1]. Furthermore,
the Gj are then uniformly translated on L with j = 0, . . . , L − 1. Together with locality
and uniformity certain linear combinations of Gj which are real by definition, will exhibit
unphysical zero modes for odd valued box lengths L. This corresponds to an odd number
of elements in j. This becomes obvious when looking at a sum over span{Gn} with
alternating sign i.e. for aj,k = (−1)j in the first part of (3.7)

G̃zero mode(x) =
L−1∑

j=0

(−1)jGj(x). (3.12)

However, the proposed Q†Q regularisation remedies this complication. Now both sides
of
〈
Gj |Q†Q|Gj′

〉
are outside of span{Gn}. But their overlap is part of a different space,

namely span{QGn}. Therefore, the naive regularisation (3.5) is traded for a type of
effective action that we will use for the upcoming parts of the thesis

Seff[φ] =

∫

dd+1xL(φ)− 1

2
log(det

〈

Gj |Q†Q|Gj′
〉

). (3.13)

In the next section we will examine how sensitive possible pseudoparticle candidates are
to the type of regularisation (Q or Q†Q). We address this issue by considering a spatially
dependent Dirac operator.
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Fig. 3.1: L = 6. (a) Periodic B-spline basis functions of degree j = 2. (b) Anti-periodic B-spline basis
functions of degree j = 2. The blue curves correspond to basis function with full support within the
computational domain [0, L− 1].

3.2 B-Splines

We define the basis functions for B-splines of degree k by joining several polynomial pieces
of degree j with at most Cj−1 continuity. Correspondingly a so-called knot vector T =
(t0, t1, . . . , tm) or more explicitly a set of non-descending breaking points t0 ≤ t1 ≤ · · · ≤ tm
subdivides the domain into regions labelled by k [32]

N0,k =

{

1 if tk ≤ x < tk+1

0 otherwise
(3.14)

Nj,k(x) =
x− tk
tk+j − tk

Nj−1,k(x) +
tk+j+1 − x

tk+j+1 − tk+1
Nj−1,k+1(x) , (3.15)

where the knot vector T is split uniformly such that

tk = k
L

m
. (3.16)

Here m is the number of subdivided intervals of L. This also makes the reference to knots
clearer as the values of (3.16) tie together the polynomials. Both periodic and anti-periodic
B-spline basis functions amount to

Nantiperiodic
j,k (x) = Nj,k(x)−Nj,k−L(x) , (3.17)

Nperiodic
j,k (x) = Nj,k(x) +Nj,k−L(x) , (3.18)

as motivated by (3.11) and shown in Fig. 3.1. It will prove very beneficial that B-spline
basis functions have finite support. In other words, it is only non-zero on a few adjacent
subintervals such that the basis functions are quite localised in space[-time].
Remember, that we want to approximate fermionic fields and the chiral condensate. Al-
ready low degrees k should then be able to encompass not too heavily oscillating field
configurations. With the first derivative in Q†Q in Eq. (3.13) the minimal order of contin-
uous differentiation is C1. Hence, the degree of the B-spline basis is at least j = 2 which
will be used for our study.
In the explicit case for j = 2, basis functions consist only of three parabolic pieces of
neighbouring subintervals giving rise to a total space[-time] volume of V = 3d.
Considering the piecewise polynomial form of (3.14) consecutively the derivative remains
analytical consisting only of B-spline basis functions of degree j − 1. This is tantamount
to differentiating (3.14) and inductively proving the claim (cf. Sec. B.1)

∂xNj,k(x) =
j

tk+j − tk
Nj−1,k(x)−

j

tk+j+1 − tk+1
Nj−1,k+1(x) . (3.19)
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Fig. 3.2: L = 7. log det(∂x + σ) as function of σ based on finite mode regularisation, Q-regularisation
and Q†Q-regularisation for both (a) B-Splines and (b) D3 Wavelets.

Hence, we obtain closure under Q†Q which is in agreement with the account of Sec. 3.1.1.
Returning to the discussion on how the regularisation influences the computation of the
functional determinant we consider a simple example: the anti-Hermitian operator ∂x on
the interval 0 ≤ x ≤ L. With plane wave and B-spline basis functions of degree j = 2

Gk(x) = Nantiperiodic
2,k (x), (3.20)

for k = 0, . . . , L− 1 and L = 7. We inspect the function

log det(∂x + σ), (3.21)

in the Q†Q and Q regularisation scheme. Furthermore, the B-spline basis functions (3.19)
are orthonormalised using Gram-Schmidt-Orthonormalisation. The resulting σ depen-
dence is illustrated in Fig. 3.2 (a). The behaviour of the Q†Q regularisation by plane
waves and by B-splines is very similar and dependent on the amount of degrees of free-
dom. Both the plane wave solutions are for N = 8 and N = 6 lowest lying eigenmodes
w.r.t. the momenta in (4.16). For the B-splines we had N = 7 orthonormal basis func-
tions which explains the position of the curve in between. In contrast, the Q-regularised
(blue) B-splines display a distinct pattern. On the one hand, it approaches the N = 7
solution from below at large σ because high values σ will eventually start dominating the
fermion matrix diagonal. On the other hand, it shows a pole at σ = 0 due to unphysical
zero-modes as discussed in Sec. 3.1.1.

The basis functions should also be refinable which means to express any Nj,k as a linear
combination of B-splines of finer knots at smaller scales using translations k′

Nj,k →
∑

k′

dj,k′Bj,k′ , (3.22)

by adding more and more details at fixed degree j. The usage of this refinement equation
would eventually lead to the possibility to reconstruct the whole L2(R). However, even
after normalisation the spaces spanned by finer Bj,k are not orthogonal among themselves
nor the initial scale functions Nj,k. Nevertheless, this would be a favourable feature for
numerical implementations regarding the fermion determinant. In the subsequent section
we present a family of functional bases that circumvent this obstacle.

3.3 Wavelets

With the intention of migrating to higher dimensions and the necessity of gaining efficiency
for the search of kink solutions in the crystal phase, we want to determine a smaller number
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3. Fermions in the Pseudoparticle Approach

of physically important fermionic field configurations. In order to achieve this task using
spatially localised functions as for B-Splines we propose a different kind of basis functions
namely Wavelets. Localised means that the wavelet enjoys compact support or that its
amplitude decays at least exponentially outside a given interval. Contrary to a plane wave
expansion, the pivotal motivation for working with wavelets as pseudoparticles are their
potential to capture both spatial and scale (momentum) information w.r.t. the function
of interest.
In the upcoming sections we focus intensively on the discrete wavelet family constructed
by Daubechies and set our notation. For a more comprehensive survey see [33].

3.3.1 Daubechies Wavelets

Compared to other possible candidates Daubechies wavelets assert a number of vanishing
moments N = 2g equivalent to the wavelet system denoted by W = Dg. Where g is
a positive integer called the wavelet genus and describes how accurately a function is
encoded through the corresponding wavelet basis. In the following context

∫

R

ψ(x)xp dx = 0 (3.23)

for p ∈ {0, . . . ,N−1}, a function ψ(x), the wavelet “mother” function, is supported on the
interval suppψ = [0,N−1]. As we will derive below the systemDg is fully defined by ψ and
another function φ, the father scaling function with the same suppψ = suppφ = [0,N−1].
This implies that the supports of their n-th derivatives ψ(n) and φ(n) coincide, meaning
suppψ(n) = suppφ(n) ⊆ [0,N − 1].
Up to a certain scale it is then sufficient to express every function via wavelet functions
(mother wavelet) ψj,k and scaling functions (father wavelet) φj,k. We will discuss this in
the ensuing paragraph. For the remainder when talking about scale, the parameter j ∈ Z

will encode information regarding higher scale at large j as well as lower scale at small j.
In analogy to the plane wave formalism (cf. Sec. 4.3) the scale j directly corresponds to
momentum and is inversely proportional to distance at resolution 2−j .

3.3.2 Multiresolution Analysis

Following closely the account in [33] we start with the space L2(Ω) of all square integrable
functions on the domain Ω = R meaning ‖f‖2L2 < ∞. Using a Multiresolution Analysis
(MRA) an orthonormal basis thereof can be constructed from a progressing sequence of
closed scaling subspaces {Vj}j∈Z in order to approximate L2(R) and a function φ satisfying
orthonormality conditions. In other words, the procedure depends on a clever choice of the
scaling function φ, such that it satisfies some continuity, smoothness and tail requirements.
But, most importantly, the family

{T kφ(x) ≡ φk(x)}k∈Z (3.24)

constitutes an orthonormal basis for the reference space V0 [15] from a single function
φ using only discrete unitary translations T and dilations D thereof. Both the discrete
translation T and the dilation D operate on functions f ∈ L2(R) and are defined via

Df(x) = √
af(ax) , T f(x) = f(x− b) . (3.25)

In the case of acting on f(x) multiple times, we have

T kf(x) =

k-times
︷ ︸︸ ︷

T ◦ · · · ◦ T f(x) = f(x− kb) . (3.26)
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3.3. Wavelets

We stress that the construction is valid for all rational dilation factors a > 1. In general
a = 2 is the simplest option [34] together with b = 1. The latter choice is not very serious
because for arbitrary b (3.25) can always be translated into itself such that it suffices to
assume b 6= 0. This alters the definition of D in (3.25)

Df(x) =
√
2f(2x), T f(x) = f(x− 1) . (3.27)

We apply the latter during the definition specifying the arguments from above. Note that
the overline . in the following denotes the closure of a set.

Definition 3.1 The scaling spaces Vj are nested and describe consecutive approximations
of L2(R)

{0} ⊂ · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · ⊂ L2(R) (3.28)

Thus, the space L2(R) is a closure of the union of all Vj. Conversely, the closure
⋃

j∈Z Vj
is dense in L2(R) while

⋂

j∈Z Vj = {0}. Lastly, when scaled by a factor 2 functions move
from scale Vj to Vj+1 or

f ∈ Vj ⇔ Df ∈ Vj+1

Remark 3.2 With φ being an orthonormal basis for V0 in (3.24) one condition is the
normalisation in the L2-norm

‖φ‖L2 =

(∫

dx |φ(x)|2
) 1

2

= 1.

An additional requirement is the convenient choice of the unit area of φ [33]

∫

dxφ(x) = 1.

Additionally, one defines detail spaces Wm as the orthogonal complement of Vj in Vj+1

Vj+1 = Vj ⊕Wj , Wj ⊥ Vj , (3.29)

with the orthogonal direct sum of Hilbert spaces. We consider the spaces V1 and V0 for a
moment which will be beneficial to understand the difference between ψ and φ and theW0

and V0, respectively. Intuitively (3.27) and (3.28) tell us that V1 is double the size as V0.
This is true because the latter is constructed from integer translations of φ0,0. However,
on a bigger scale namely at V1 the basis is generated by translation of two functions φ1,0
and φ1,1. A natural consequence would be to assume that W0 which is the complement of
V0 in V1 is then itself generated from a single function ψ alone.
For an arbitrary scale j and in the following discussion, we define the spaces spanned
by {φj,k}k∈Z and {ψj,k}k∈Z over the translation parameter k and scale parameter j by
closures Vj and Wj

Vj = span{φj,k}k∈Z, (3.30)

Wj = span{ψj,k}k∈Z. (3.31)

The orthonormal bases {ψj,k}k∈Z and {φj,k}k∈Z are written utilising the properties in
Def. 3.1 and the adequate dilation and translation operations (3.27)

ψj,k(x) = (DjT kψ)(x) = 2
j

2ψ(2jx− k) , (3.32)

φj,k(x) = (DjT kφ)(x) = 2
j

2φ(2jx− k) . (3.33)
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3. Fermions in the Pseudoparticle Approach

Before commencing an attempt to use wavelets in an expansion to reconstruct fermionic
fields in the pseudoparticle approach, we retrieve some orthogonality conditions. On the
account of Eqs. (3.29) and (3.24) clearly ψj,k ∈Wj is orthogonal to φj,k ∈ Vj . Furthermore,
all the Wj are orthogonal among themselves which effectively means that

〈
φj,k, φj′,k′

〉
= δk,k′ , (3.34)

〈
ψj,k, ψj′,k′

〉
= δj,j′δk,k′ , (3.35)

〈
φj,k, ψj′,k′

〉
= 0 for j′ ≥ j . (3.36)

Notably in the first relation (3.34), we can see that different scales do not affect each other
due to the missing δj,j′ . In summary, we assembled most basic features of Daubechies
wavelets that will help us to construct the Hilbert space. These orthonormality conditions
already reinforce the argument in (3.22) where off-diagonal elements in e.g. the fermion
matrix are equal to zero.

3.3.3 Wavelet Expansion

Having outlined how to set up an orthogonal succession of “detail” Wj and “scaling”
spaces Vj , a logical conclusion from (3.28) and (3.29) would be

L2(R) = V∞ = Vj0 ⊕Wj0 ⊕Wj0+1 ⊕Wj0+2 ⊕ . . . (3.37)

= Vj0 ⊕
∑

j≥j0
Wj =

⊕

j∈Z
Wj , (3.38)

for the full Hilbert space L2(R). Assuming that approximation is good enough at a scale
j = n we use this fixed cut-off to find the isomorphism

Vj0 ⊕n−1
j=0 Wj ≃ Vn, (3.39)

These properties (3.37) and (3.39) ensure the possibility to decompose every function
f(x) ∈ L2(R) as a linear superposition of “scaling” basis functions {φj,k(x)}k of Vj and
“wavelet” basis functions {ψj,k(x)}j≥j0,k of Wj

f(x) =
∑

k

cj0,kφj0,k(x) +
∞∑

j=j0

∑

k

dj,kψj,k(x) . (3.40)

The number N = 2g of vanishing moments (3.23) of the “mother” wavelet ψ0,0 eventually
determines the accuracy of approximation. Strictly speaking the higher the genus g the
better any function of the Hilbert space will be reproduced. Now, if Pn and Qn induce
orthogonal projections of L2(R) onto Vn andWn respectively it follows that Pn+1 = Pn+Qn
for an arbitrary function f(x) ∈ L2(R). In this context we discriminate between a coarse
approximation coefficient

cj0,k = 〈φj0,k, f〉 =
∫

R

φj0,k(x)f(x) dx (3.41)

and a detail coefficient

dj0,k = 〈ψj,k, f〉 =
∫

R

ψj,k(x)f(x) dx . (3.42)

For explanatory reasons we narrowed the discussion to one dimension. However, an ex-
tension of the MRA in higher dimensions was already proposed in [35] and will be needed
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3.3. Wavelets

when advancing to QCD. Hence, we restrict ourselves to the description of scaling functions
only and define

Vj = Vj ⊕ Vj . (3.43)

Scaling functions simply factorise and the union of all Vj is again equivalent to L2(R2)
which gives similarly to Eq. (3.30)

Vj = span{Φj,k}k∈Z2 . (3.44)

The scaling functions Φj,k obey the same pattern as for the one-dimensional case

Φj,k(x1, x2) = 2jΦ(2mx1 − k1, 2
jx2 − k2), (3.45)

= φj,k1(x1)φj,k2(x2) , (3.46)

with k1, k2 ∈ Z, k = (k1, k2) and suppΦ = [0,N − 1]× [0,N − 1]. The purpose of the two
terms in (3.40) is (i) an approximation at the scale j0 as well as (ii) a sum over details in the
respective function spaces Wj using corresponding wavelet functions of increasing higher
scales. It remains to mention that scaling functions φ themselves are uniquely defined as
a superposition of shifted φ at the same scale which we will derive now. The parameters
{ak} in this sum are the wavelet filter coefficients {ak} ∈ l2(Z). As a side comment, I
note here that other literature favours wavelet coefficients with the property

√
2ak = hk.

Along the course of this thesis we refer to [36] being used to determine accurately with
double precision accuracy the Daubechies filter coefficients.
Since Vj ⊂ Vj+1, any function in Vj can be expanded in terms of basis functions of Vj+1.
In particular, φj,0(x) ∈ Vj are all of the same scale j. Exclusively for j = 0 we use
φ(x) = φ0,0 ∈ V0

φ(x) =
∑

k∈Z
akφ1,k(x) =

√
2
∑

k∈Z
akφ(2x− k) . (3.47)

Especially, compactly supported Daubechies “father” scaling functions φ only have a finite
number of nonzero ak. These basis functions φ are constructed from a single function and
satisfy the linear renormalisation group equation known as the recursive dilation equation

φ(x) =
√
2

N−1∑

k=0

akφ(2x− k) = D
[N−1∑

k=0

akT kφ(x)

]

. (3.48)

In Eq. (3.48) the scaling function φ(x) first undergoes block averaging i.e. translations
T k weighted with the coefficients ak. The resultant expression is rescaled with D where
φ(x) is now a fixed point. Remark 3.2 can then be interpreted as a scale fixing condition.
This makes Daubechies wavelets a natural basis for renormalisation group transformations
and explains also their popularity in Field Theories. Equation (3.48) also clarifies why a
higher wavelet genus g yields higher computational expenses – every block average will
just involve more translations k (recall N = 2g in (3.48)).
The aforementioned orthonormality and support of φ in Rem. 3.2 also bound the summa-
tion when integrating both sides of the dilation equation (3.48) with 2x 7→ x yielding the
algebraic equation

N−1∑

k=0

ak =
√
2 . (3.49)

Consequently, we can backtrack and specify the condition (3.23) for N vanishing moments
a bit further by realising that the scaling function describes any polynomial up to degree
N − 1 exactly. This signifies for the monomials {xp} that

∑

k∈Z
Mp
kφk(x) = xp . (3.50)
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3. Fermions in the Pseudoparticle Approach

One can immediately derive the effect on the wavelets by integration over R and multipli-
cation with ψ(x)

∑

k∈Z
Mp
k

∫

R

φk(x)ψ(x) =

∫

R

xpψ(x). (3.51)

At last we exploit orthogonality 〈φ, ψ〉 = 0 and obtain the desired vanishing moment
relation 〈xp, ψ〉 = 0.

3.3.4 Wavelet Calculus and Improper Connection Coefficients

Regarding subsequent calculations we emphasise that Daubechies wavelet scaling functions
lack an expression in closed form. Their basis functions mostly exhibit a fractal structure.
In other words, Daubechies wavelets families miss a classical prescription for differentia-
tion. On our course of using wavelets as a candidate for the pseudoparticle approach, we
need to compute the most important integrals occurring along the fermion matrix with
Q†Q-regularisation. To dispose of this obstacle in the evaluation of derivative overlaps
in matrix elements, one defines improper connection coefficients for a wavelet system W
respecting the order of differentiation

Λd1,...,dnk1,...,kn
=

∫

R

dx

n∏

l=1

φ
(dl)
kl

(x) =

〈
n∏

l=1

φ
(dl)
kl

〉

(3.52)

with the scale fixed at φk(x) ∈ V0 from now on. Here, the attribute improper refers to
the fact that we are considering the whole R as our computational domain. If we choose
finite box sizes which are smaller than the support of the utilised scaling functions φ one
incurs a systematic error. We will resolve this issue in Sec. 3.3.5 employing so-called proper
connection coefficients. Luckily those overlap integrals of basis functions and low-order
derivatives can be carried out analytically using both the renormalisation group equation
(3.48) and its scale fixing condition.

Regarding the matrix elements of Q, we need only bilinear connection coefficients up to
first order in differentiation. To this end, we employ the algorithm proposed in approaches
[37, 38] using the dilation equation (3.48) to reformulate the connection coefficients as a
solution of a linear system. This procedure provides exact and explicit representations via
rational coefficients.
Modifying the general expression (3.52) we demonstrate the ideas on two-term connection

coefficients Λ0,d
k,l with k, l = 0, . . . , 2g − 1 adopting a Daubechies wavelet system Dg with

genus g. The integral defined as

Γd;kl := 〈φk, φ(d)l 〉 , (3.53)

does not exist in a classical sense. Note that due to locality and integration by parts (3.52)
only depends on the total degree of derivatives

d =
∑

l

dl. (3.54)

For first order derivative connection coefficients Λ1,0
k,l = Γ1;k

l = Γkl , we obtain

Γkl :=
〈
φk, φ

′
l

〉
, (3.55)

To facilitate the discussion, we will exclusively refer to fundamental connection coefficients
which are the non-recurring and non-zero values of Γ. These are the only non-zero coeffi-
cients obeying the overlap of both φ supports such that Γ = {Γ0

l }N−2
l=1 . Its skew symmetry

and invariance under a global shift lead to

Γkl = −Γlk. (3.56)
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To reconstruct the whole fermion matrix, we have the necessity to continue with higher
order connection coefficients in the scaling fields φ due the product of the two Dirac
operators Q†Q requiring second order bilinear and trilinear terms. Hence, we need the
additional integrals of Λ0,2

k,l = Γ2;k
l = Ωkl and Λ0,0,1

0,k,l = Υk
l

Ωkl :=
〈
φ′k, φ

′
l

〉
= −

〈
φk, φ

′′
l

〉
, (3.57)

Υk
l :=

〈
φkφl, φ

′〉 . (3.58)

Also here the number of unique fundamental connection coefficients is subject to the
symmetry induced by integration by parts

Ωkl = Ωlk , (3.59)

Υk
l = Υl

k . (3.60)

Given N vanishing moments (3.23) the d-th derivative of φ(x) can simply be decomposed
into a superposition of dilated version of itself φ(x− k) with bilinear Γs from Eq. (3.53)

φ
(d)
l =

∑

k

Γd;kl φk(x) +
∑

j,k

Γd;j;kl ψj,k(x) . (3.61)

Consequently, when taking the inner product with φk or ψj,k only terms of identical scale
j survive in the connection coefficients. This results from the orthogonality amongst them
according to (3.34) - this renders Λ sparse.
For later purposes, we outline the technique by calculating fundamental two-factor con-
nection coefficients Λd1,d20,l = (−1)d1Λ0,d1+d2

0,l = Γd;0l taking the dilation equation to derive
the identity

φj−1,l(x) = 2
j−1

2 φ(2j−1x− l) =
N−1∑

k=0

akφj,2l+k(x) . (3.62)

Its d-th derivative at j = 1 admits a relation to the scale at j = 0 under the assumption
that φ ∈ Cd(R)

φ
(d)
l (x) =

N−1∑

k=0

akφ
(d)
1,2l+k(x) = 2d

√
2
N−1∑

k=0

akφ
(d)
2l+k(2x) . (3.63)

Inserting this result together with the dilation equation into (3.53) we derive a recursion
relation

Γd;0l =

∫

R

[
√
2
N−1∑

r=0

arφr(2x)

][

2d
√
2
N−1∑

s=0

asφ
(d)
2l+s(2x)

]

dx , (3.64)

= 2d+1
N−1∑

r=0

N−1∑

s=0

aras

∫

R

φr(2x)φ
(d)
2l+s(2x) dx , (3.65)

= 2d
N−1∑

r=0

N−1∑

s=0

aras

∫

R

φr(x)φ
(d)
2l+s(x) dx = 2d

N−1∑

r=0

N−1∑

s=0

arasΓ
d;0
2l+s−r .

(3.66)

These are called the scaling equations [15]. We know that Γd = {Γd;0n }N−2
n=2−N is a column

vector of (2N − 3) components and only non-zero around n ∈ [2 − N ,N − 2]. Due to

the overlap of supports of φ(x) and φ
(d)
l (x), we can simply act with the transformations

n = 2l + s− r or s = n+ r − 2l with the summation bounds of r ∈ [0,N − 1] still intact.
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3. Fermions in the Pseudoparticle Approach

For limited r within max(0, p) ≤ r ≤ min(N − 1,N − 1 + p) one adequately substitutes
p = 2l − n and defines

āp =
∑

r

arar−p. (3.67)

Accordingly only one sum in Eq. (3.64) remains. The resulting linear system (A −
2−dI)Γd = 0 is stated in components

N−2∑

n=2−N
ā2l−nΓ

d;0
n =

1

2d
Γd;0l . (3.68)

These equations exhibit a unique solution only after adding a normalisation condition
of the moments which can be computed in closed form demonstrated in Appendix B.2.
Therefore, Eq. (3.50) is differentiated at p = d by the order of its degree

∑

k∈Z
Md
kφ

(d)
k (x) = d!, (3.69)

which, after taking the inner product with φ(x), results in

N−2∑

l=2−N
Md
l Γ

d;0
l = (−1)d1d! (3.70)

Here d1 is the first derivative in the summation (3.54). Clearly one is not simply interested
in connection coefficients at scale j = 0. Thus, for an arbitrary resolution j > 0 the set of
homogeneous equations (3.68) remains unchanged and only the r.h.s. of the inhomogeneous
moment equation (3.70) acquires an additional factor 2jd which signifies

Γd;kl (j) = 2jdΓd;kl . (3.71)

Remark 3.3 Equation (3.68) implies that the connection coefficient vector Γd belongs to
the eigenspace related to the eigenvalue λ = 2−d of [A]l,n = ā2l−n. The only exception to
this statement is the case g = 2, d = 2 where λ = 1

4 does not correspond to an eigenvector
of A

{λn}N−1
n=0 =

{
1, 12 ,

1
4 + 9.95398× 10−9i, 14 − 9.95398× 10−9i, 18

}

and henceforth the solution to (3.68) is ill-defined.

A similar procedure is applied to deal with the trilinear coefficients (3.58). The leftover
difficulty of a high condition number κ2(A) = ‖A‖2‖A†‖2 is tackled by applying shifted
Chebyshev polynomials T ∗

n(x) = Tn(2x − 1) on the interval [0, 1] in order to form the
extra inhomogeneous equations [39] i.e. mixed moment conditions. Thus, one extends
Eq. (3.14) by a change of basis and by replacing the monomials {xd} on the right with an
equivalent T ∗

d (x) basis of the same degree. Therefore, we match the coefficients {tjn}nj=0 of
the monomials in T ∗

n(x) on both sides

N−2∑

l=2−N

d∑

j=0

tjdM
j
l φl(x) = T ∗

d (x) . (3.72)

Differentiating both sides of this relation d times, similar to Eq. (3.14), yields the redefined
moment equation

N−2∑

l=2−N

d∑

j=0

tjdM
j
l Γ

d;0
l = (−1)d22d−1d! . (3.73)
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3.3. Wavelets

Recall that the d-th derivative of T ∗
d (x) respecting the shift causes an additional factor of

2 in comparison to the known T
(d)
d (x) = 2d−1d!. The problematic part of the matrix A,

however, is that the rank deficiency lies in the homogeneous equations (3.68) such that
the effect of blending moments only affects results at higher scale of refinement j > 0.
Equipped with the necessary tools to express the effective action (3.13) in a basis of
wavelets, we now discuss the construction of periodic and anti-periodic bases on a finite
interval.

3.3.5 Proper Connection Coefficients

For the transition towards finite size extensions in both spatial and temporal direction, we
need to compute the connection coefficients of compactly supported wavelets on bounded
intervals. These proper connection coefficients are introduced in [40] and will be defined
on the support range [0,N − 1]

∆d1,...,dn
k1,...,kn

=

∫ N−1

0
dx
∏

l

φ
(dl)
kl

(x) (3.74)

such that the integrand has support [k,N−1+l] for k > l. Hence, for the special case when
the integrand lies in the computational domain both proper and improper coefficients are
equal. Non-zero values which are different from the already known improper coefficients,
correspond to 2−N ≤ k, l ≤ −1 or 1 ≤ k, l ≤ N − 2, respectively. The scaling equations
as derived in (3.64) constitute of Eq. (3.74) and

∆d1,...,dn
k1−(N−1),...,kn−(N−1) =

∫ N−1

0
dx
∏

l

φ
(dl)
kl−(N−1)(x) (3.75)

=

∫ 2N−2

N−1
dx
∏

l

φ
(dl)
kl

(x) . (3.76)

To recover improper connection coefficients Λ on the full support [0, 2N − 2] we combine
(3.74) and (3.75) for the resulting identity

∆d1,...,dn
k1,...,kn

+∆d1,...,dn
k1−(N−1),...,kn−(N−1) = Λd1,...,dn0,k2−k1,...,kn−k1 . (3.77)

Furthermore, we limit calculations to the special case mentioned above where the inte-
grand’s support in (3.74) never exceeds the integration boundaries. Using this property
we will be able to evaluate proper connection coefficients in the finite interval of periodic
and anti-periodic basis functions.
This is exactly what was done for the B-splines except that we did not have to pay atten-
tion because we could simply analytically evaluate their proper connection coefficients.

3.3.6 Wavelet Basis Functions

As addressed during the introduction of B-splines in Sec. 3.2, we now construct wavelet
basis functions Wj,k for k = 0, . . . , L− 1 and 0 ≤ x ≤ L at scale j, shift k and polynomial
approximation up to degree 2g−1. Again g is the genus of the Daubechies wavelet system
Dg

W antiperiodic
j,k (x) = φj,k(x)− φj,k−L(x) (3.78)

W periodic
j,k (x) = φj,k(x) + φj,k−L(x) . (3.79)

For g = 2 we present both periodic and anti-periodic basis functions on an interval of
L = 6 in Fig. 3.3.
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3. Fermions in the Pseudoparticle Approach
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Fig. 3.3: L = 6. (a) Periodic Daubechies wavelet basis functions of genus g = 2. (b) Anti-periodic
Daubechies wavelet basis functions of genus g = 2. The blue curves correspond to basis function with full
support within the computational domain [0, L− 1].

Similarly to the example for B-splines, we inspect Eq. (3.21) for an analogous patho-
logical behaviour regarding unphysical zero modes from Sec. 3.2. Again the comparison of
the regularisation schemes on anti-periodic D3 wavelet pseudoparticles with mode expan-
sion as an eigenfunction reference for the anti-Hermitian Q = ∂x is illustrated in Fig. 3.2.
We assign the shape for the Q-regularisation to the presence of unphysical low lying pseu-
doparticle modes. Surprisingly, the Q†Q regularised wavelets also are not just parallel
shifted to the plane waves but rather coincide with the N = 8 solution at σ = 0. This
result is unexpected but yet means that we have a higher overlap with Q using less basis
functions. Hence, wavelets appear to suit the requirements when aiming for a minimal
set of physically relevant fermionic pseudoparticles. Reducing the functional basis will be
favourable especially when considering the full QCD Dirac operator.

This closes the characterisation of wavelets. In the next chapter we will apply the
approaches gathered above within the (1 + 1) dimensional GN model. Finally, we will
devise an unbiased procedure to pursue QCD analyses and justify the utilisation of pseu-
doparticles further.
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Chapter 4

Regularisation of the discrete GN2

Model

Having collected the necessary tools to regularise the GN model in (1 + 1) dimensions,
which is renormalisable in the four-fermi coupling (cf. Sec. 2.1.1), we present different
paths prompting the pseudoparticle approach from Ch. 3. We outline parallels between
the lattice formulation and the mode expansion before using B-splines and Daubechies
wavelets to reconstruct the phase-boundary for both homogeneous and inhomogeneous
condensation. By illustrating the cornerstones of these regularisation schemes we fine-tune
the procedures in order to develop a wavelet-based unbiased algorithm which is capable
of dealing with consecutive calculations in (3 + 1) dimensions.

4.1 Finite-Density Calculations

In principle the algorithm to determine the phase boundary in the (µ, T )-plane (cf. Fig. 1.1)
and the evaluation of σ(x) are straightforward when considering QCD effective models.
One simply has to find the field configuration that minimises the effective action with
respect to σ. In the presence of different phases, we monitor Seff with three solutions of
different topologies at our disposal

(I) Restored symmetry σ = 0

(II) Broken symmetry by homogeneous condensate σ = const.

(III) Broken symmetry by spatially inhomogeneous condensate σ = σ(x)

The strategy is to either fix the chemical potential µ or the temperature T , the finite
temporal extension L0 of the box, and to simultaneously vary the other variable in the
(µ, T )-plane. For a given µ, we then decrease from high T which coincides with the
regime of restored symmetry. For intermediate densities a phase transition occurs from
the symmetric towards a crystalline phase in the (1 + 1)d GN model [8]. This signifies
that in the first case σ = 0 where in the second region σ = σ(x) oscillating around zero
with a given amplitude.

4.1.1 Twisted Chiral Kinks

Before moving to more technical parts for the minimisation procedure of the effective
actions, we evaluate some assumptions on the ansatz of the inhomogeneous condensate.
In general, the simplest non-constant field configuration is the chiral density-wave ansatz
(CDW) [41], which is a one-dimensional plane wave type of the chiral condensate. The
latter assumes an oscillating form of σ(x1) ∼ cos(px1) with momentum p. It has already
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4. Regularisation of the discrete GN2 Model

been shown that inhomogeneous condensation in (1+ 1)d is favoured over any constant σ
provided densities are high enough [10, 8]. However, when considering multi-fermion bound
states twisted kinks appear suitable for mostly all regions of the (µ, T )-plane because they
are regarded as the elementary building block of hadrons in discrete GN models [16]. This
picture is consistent with Dashen-Hasslacher-Neveu (DHN) [9] baryons which interpolate
between two different vacua separated in space x and topologically stabilising the single
kink-antikink state. The latter corresponds to the baryon solution with mass mB =
σ0

2N
π [42] and σ0 the non-vanishing vacuum expectation value of the scalar field σ.

Naturally the condensate then connects two points on the chiral vacuum manifold S1

which respects the symmetries of both the discrete GN and the χGN model (cf. Ch. 2).
To implement chirally twisted condensates on a regularised system with finite spatial size
L1, it suffices to impose anti-periodic spatial boundary conditions on σ(x1) = −σ(x1+L1)
and the ψ fields according to Γ in (2.17). A naive functional ansatz is

σ(x1) = σ0 tanh(σ0x1) . (4.1)

Choosing such an explicit functional form fails to reflect the purpose of the survey in this
thesis. Possible further minimisation procedures would then depend on this choice which
is why we emphasised to conduct an unbiased variational study similar to [10]. Hence,
only a suitable orthonormal basis for the Hilbert space L2(R) is selected (cf. Ch. 3).

Starting from the three solutions (I,II,III) the minimal effective action controls which
phase is favoured. Certain regions of the (µ, T )-plane then might be predestined for a
different ordering in Seff. Thus, when sweeping through the (µ, T )-plane one encounters
reversion points in this ordering of solutions – implying an emergent phase boundary.
The motivation for this approach is its direct extension towards higher dimensions and
models that do not enjoy renormalisability. The latter is a UV phenomenon and affects
the effective action for (I–III) equivalently. Thereby our algorithm has the advantage
to circumvent previously discussed regularisation schemes in (3 + 1) dimensions e.g. the
Pauli-Villars regularisation in the GN4 model (cf. Sec. 2.1.4). Hence, for both the GN2

and GN4 model the process is similar, provided the developed algorithm is stable enough
in (1 + 1) dimensions.

To exemplify this idea, we will obtain the phase boundary of the discrete (1 + 1)
dimensional GN model on the lattice using staggered fermions as well as through mode
expansion. Besides, we will use this first section to argue why inhomogeneous condensation
should be favoured compared to any translationally invariant special case of σ.

4.2 Lattice Formulations of the GN Model

We present again the gap equation of the discrete GN2 model (cf. Sec. 2.1.1) which will
be our starting point for the formulation of the model on the lattice

1

λ
=

∫
d2k

(2π)2
2

k2 + σ2
, (4.2)

together with the trivial stationary point σ = 0 of Seff in (2.14). Initially, we are merely
interested in constant σ and confine the theory in a box by defining

Seff[σ] = lim
L1,L0→∞

S̃eff[σ]

L1L0
, (4.3)

where the tilde in S̃eff designates the discretised version of the effective action with L0 and
L1 the temporal and spatial extent, respectively. Furthermore, the regularisation of the
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4.2. Lattice Formulations of the GN Model

theory on the lattice involves introducing a lattice spacing a where the lattice momenta
k̂µ implied by our discretisation enter

k̂µ =
2

a
sin

akµ
2

, k0 =
2π

N0

(

n0 +
1

2

)

, k1 =
2πn1
N1

, nµ ∈ [0, Nµ − 1] . (4.4)

Hence, substituting the integral over momenta kµ with a discrete sum over k̂µ produces the
lattice version of the gap equation where we introduced a temperature T = 1

L0
reciprocal

to L0. In order to retrieve meaningful results it is advantageous to base numerical calcu-
lations on dimensionless quantities. We reformulate all dimensionful quantities in units of
σ0 = 〈σ〉, the expectation value of the condensate at zero chemical potential µ = 0 and
temperature T = 0. Especially the lattice spacing a is now cast to â = (aσ0) similar to
the coordinates x̂µ = xµσ0 and

µ̂ =
aµ

aσ0
=

µ

σ0
, σ̂ =

σ

σ0
. (4.5)

Effectively the gap equation remains unchanged, except that all prior dimensionful quan-
tities are now denoted with a hat .̂ The lattice counterpart of Eq. (4.2) is obtained by
differentiation of the discrete effective action (4.2)

1

2σ̂

d

dσ̂

Seff
N

= 0 . (4.6)

For an arbitrary chemical potential µ̂ ≥ 0 this yields

1

λ
=

2

L̂0L̂1

∑

n0,n1

[
2
â sin

π(n0+1/2)
N0

]2
+
[
2
â sin

πn1

N1

]2
+ σ̂2 − µ̂2

[[
2
â sin

π(n0+1/2)
N0

]2
+
[
2
â sin

πn1

N1

]2
+ σ̂2 − µ̂2

]2

+
[
4µ̂
â sin πn1

N1

]2
, (4.7)

which simplifies for zero chemical potential µ̂ = 0

1

λ
=

2

L̂0L̂1

∑

n0,n1

[[
2

â
sin

π(n0 + 1/2)

N0

]2

+

[
2

â
sin

πn1
N1

]2

+ σ̂2

]−1

. (4.8)

4.2.1 Coupling Constant Renormalisation

To define the model uniquely and compute comparable results among different degrees of
freedom a coupling constant renormalisation is necessary. The procedure to achieve this
uses a predetermined finite temperature and spatial extension at zero chemical potential
µ̂ = 0. Thus, for given â, L̂1 and L̂0c corresponding to the critical temperature T̂c =

eγE
π =

0.567 [7] one solves the gap equation (4.7) for λ. Here γE = 0.577 is Euler’s constant. That
also allows to obtain σ as a function of λ which is displayed in the left panel of Fig. 4.1 for
different lattice extents. The asymptotic scaling curve σ(λ) = 2

5
2 e−

π
λ [3] is also included.

As already observed in Fig. 4.1 the value of vanishing condensate σ corresponds to the
critical temperature where chiral symmetry is broken. Lastly, the computation at arbitrary
finite temperatures L̂0 > L̂0c requires a zero temperature computation to fix the vacuum
expectation value σ0 and render the constituent quantities finite (4.5). This means, we
pick the maximal finite temporal extent L̂00 of the order O(L̂1) to approximate the zero
temperature where σ̂ = σ

σ0
≈ 1.

From the square dependency of â in (4.7), we expect quadratic scaling of the condensate.
o check this, we fix L̂0 = 3 i.e. T̂ = 1

3 which yields the scaling behaviour illustrated in
Fig. 4.1 (left) where the extrapolated black solid line converges towards the analytically
computed value in the infinite-volume continuum σ̂(T ) = 0.914. The formalism displays
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4. Regularisation of the discrete GN2 Model

Fig. 4.1: (Right) Condensate σ as a function of the coupling λ for staggered fermions including asymptotic
scaling curves (dotted). (Left) Scaling of the condensate σ/σ0 as a function of (σ0a)

2 for lattice sizes N1.

Fig. 4.2: Phase diagram of the GN-model on the lattice assuming a homogeneous condensate σ̂ = const.
for (left) N1 = 30 and (right) N1 = 50. The underlying solid line and the tri-critical point µ̂tc present
analytic results obtained from [7].

lattice artefacts with positive sign such that the curves approach the continuum limit from
above.
Alternatively, one can regard the discussed scaling behaviour (cf. Fig. 4.1) as equivalent to
a change in temperature T̂ for fixed temporal box size while varying the coupling constant
λ. The direct proportionality between lattice spacing â and λ allows to mimic a similar
way to renormalise the coupling.

With all the free parameters fixed, the phase boundary is then determined by the
solution of the gap equation (4.2). Conversely this corresponds to monitoring the discre-
tised effective action from (4.3) for the two solutions of (I) σ̂ = 0 and (II) σ̂ = const.
for minimised value of σ̂. Around high values of µ̂ both actions will coincide because the
minimum of Seff will be identical with the zero solution outside the region of spinodal
decomposition. In comparison with analytical obtained results [7], we show the obtained
homogeneous phase boundary in Fig. 4.2 for different lattice sizes. Thus, for an increase
in the spatial box size L̂1, we observe the expected increase in accuracy analogous to the
scaling of the chiral condensate in Fig. 4.1.
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4.2. Lattice Formulations of the GN Model

4.2.2 Thermodynamics and Homogeneity of the GN2 model

The obtained phase diagram shows a second order phase boundary from µ̂ = 0 up to the
tri-critical point (µ̂tc, T̂tc) whereafter it becomes first order and reaches zero temperature
for µ̂c =

1√
2
. As argued in the introduction the naive GN2 phase diagram contradicts the

known baryon spectrum at zero temperature and is not tenable. At low baryon chemical
potential and baryon density one still expects that due to sufficient distance between
baryons

− ∂

∂ρB
logZ

∣
∣
ρB=0
T=0

= µ̂c = mB. (4.9)

However, this would yield a baryon mass identical to the critical value mB = µ̂c. The
resulting question would be if the mean field approach suffers from a systematic deficiency.
Fundamentally, this issue originates from the assumption of a uniform condensate obeying
translational invariance which we will relax from now on.

4.2.3 Inhomogeneous Phases of the GN2 model

We advance with a numerical survey of the phase plane omitting homogeneity in σ̂ in
exchange for spatially dependent condensates. This results in non-trivial solutions of
the non-linear functional differential equations from Eq. (2.30). We will use the lattice
approach in this subsection to elucidate numerical difficulties related to this change n σ̂.
Remember that in the large N -limit the dominating field configuration is the one that
minimises the effective action (2.24). This was easy for uniform mean fields in space-
time where one carries out the procedure for only one parameter σ̂ which was uniformly
distributed over all lattice sites in the fermion matrix Q†Q.
Let us exemplify the scenario after the transition towards inhomogeneity. In particular,
we remain on the lattice but instead of the preceding naive discretisation, we employ
staggered fermions [43] on a two dimensional grid with the altered effective action from
(2.14)

Seff = N
∑

x

σ(x)2

2λ
+
∑

x,y

χ̄a(x)Qx,yχ
a(y), (4.10)

for lattice sites x, y and suppressing summation over flavour indices. The fields χa(x), χ̄a(x)
emerge from one component of the diagonalised Dirac operator and are Grassmann valued
but exhibit no Dirac structure. Note that the condensate σ(x) explicitly depends on both
coordinates and is not yet chosen to be only spatially inhomogeneous. Here x1 refers to
the spatial and x0 to the temporal coordinate i.e. x = (x0, x1). Moreover, we employ
the staggered version of the Q-operator consisting of the Dirac operator Dx,y and the
non-uniform condensate in the staggered formalism

Qx,y =
1

2

[

δx,y+1̂ − δx,y−1̂

]

+
1

2
(−1)x1

[

e+µδx,y+0̂ − e−µδx,y−0̂

]

(4.11)

+
1

4

[
σ(x) + σ(x− 1̂) + σ(x− 0̂) + σ(x− 1̂− 0̂)

]
, (4.12)

with 1̂ and 0̂ the unit vectors in space and time direction. We also define the site dependent
staggered sign functions in front of the derivative terms

ηµ(x) = (−1)
∑µ−1

i=1 xi , η1 = 1 , η0 = (−1)x1 , (4.13)

where η0 = ηd with d the dimensionality of the model. In this way the degrees of freedom
are placed on non-intersecting hypercubes hµ = 0, 1, . . . , Nµ/2 − 1 sketched in Fig. 4.3
which require the discrete spatial or temporal extent Nµ to be even. Corresponding site
labels then assume values in the range xµ = 0, 1, . . . , Nµ− 1. On terms of the hypercubes,
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4. Regularisation of the discrete GN2 Model

hµ

Fig. 4.3: Distribution of the 2d degrees of freedom on hypercubes in a d = 2 lattice.

coordinate labels are restated xµ = 2hµ + sµ where sµ = 0, 1 within the respective hyper-
cube. An additional even exponent leaves the staggered sign (4.13) invariant such that it
becomes only dependent on s i.e. ηµ(x) = ηµ(s).
The introduction of the chemical potential µ in the temporally discretised enhanced Dirac
operator (4.11) via weighting the temporal derivative with e±µ is equivalent to the imag-
inary extension of ∂t → (∂t − iµ) in (2.4) for Euclidean space-time [13]. The counterpart
of the γ5-Hermiticity prescription is defined via

η5(x) = (−1)x1+x2 . (4.14)

Notably η5 also acquires a site dependency and in the chiral limit m0 = 0, we encounter
a remnant chiral symmetry preserving (2.17) in the discrete GN model

χa(x) → (−1)x1+x2χa(x) , χ̄a → −(−1)x1+x2χ̄a(x) , σ → −σ . (4.15)

Finally, the condensate’s structure of the Q-operator in the second line of (4.11) is not
arbitrary. It originates in order to avoid naive diagonal terms σ(x)δx,y and to make sure
the continuum limit is reproduced correctly by averaging over the four nearest neighbour
sites [44]. In the resulting fermion matrix Qx,y the condensate degrees of freedom are
spread over the diagonal. For later purposes, we will employ the peculiar choice of a con-
densate that is fully spatially inhomogeneous but independent of the temporal direction
σ(x0, x1) = σ(x1).
Returning to the numerical minimisation of (4.10), the difficulty lies in the computation of
the matrix-logarithm and/or the determinant. By discretising the theory, the approxima-
tion of σ(x1) is strictly relying on the spatial extent of the lattice – the number of sites N1

in spatial direction. In other words, the degrees of freedom of the χa fields are equivalent
to the coefficients of the condensate that have to be minimised. Conversely, this signifies
that by choosing bigger lattices one not only has to deal with more expensive computations
of the fermion determinant but also the minimisation will become cumbersome. Notably
also here we favour the matrix Q†Q (cf. Sec. 3.1.1).

To this end, we reproduce the revised inhomogeneous phase boundary at a spatial ex-
tent of N1 = 30 which permits to relate the results to the previous homogeneous solution
in Fig. 4.4. The coupling renormalisation procedure for λ is then equivalent to the one
proposed before in Sec. 4.2.1. The resultant boundary is depicted in Fig. 4.4. We clearly
observe the three regimes of solutions (I–III) and more importantly a different value for
the critical chemical potential µ̂c =

2
π at T̂ = 0 which is in agreement with the expected

baryon density in two dimensions [8]. The emergent crystalline phase for µ̂ higher than µ̂c
enjoys solutions for non-constant condensates and minimal effective actions in this regime.
These results are in agreement with the analytically obtained phase boundary by [8] in the
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Fig. 4.4: Phase diagram of GN2 model on the lattice using staggered fermions assuming an inhomogeneous
condensate σ̂ = σ̂(x̂1) for (left) N1 = 30 and (right) the corresponding lowest eigenvalue λmin of the Hessian
at T̂ = 0.227. The underlying line and the tri-critical point µ̂tc show analytic results obtained from [45].
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4. Regularisation of the discrete GN2 Model

continuum when extrapolated to infinite volume. The remaining obstacle is a continua-
tion of the procedure to higher dimensions which affects computational time tremendously.
The apparent argument lies in the computational complexity of both the functional de-
terminant of Q†Q with order O(N3

1 ) by means of a LU-decomposition and the subsequent
minimisation of maximal O(M) due to the fact that σ̂ is discretised along the spatial di-
rection σ̂(x1) ∝

∑

m σm with m = 1, . . . , N1. Here M is the number of degrees of freedom
of the condensate which is N1 = M on the lattice. One possible solution we discussed in
Sec. 4.1.1 is to pick a special functional ansatz for the chiral condensate which, however,
is very restrictive.
Apart from that, one can further reduce the degrees of freedom M in σ̂ by selecting an
orthonormal basis for the fermion fields and the condensate thereof. In this generalisa-
tion the solution will be maximally unbiased which is why the pseudoparticle approach is
suggested as a suitable basis choice. For a less abrupt transition, we span the discussion
employing a finite-mode regularisation closely related to using pseudoparticles.

4.3 Finite-Mode Regularisation

Having explored the lattice formulation of the theory, one can again start out from the
GN2 effective action (2.14) and consider a finite volume of space time L̂0 × L̂1 with the
Q-operator (2.9) in the Q†Q-regularisation (cf. Sec. 3.1.1).
Eigenfunctions of the pure Dirac operatorD without the σ term inQ are plane waves which
makes an expansion of the fermion fields in this functional basis a natural choice. As in the
lattice expression (4.5), we ensure dimensionless quantities in units of σ0. Additionally, the
fermionic fields fulfill anti-periodic and periodic boundary conditions for temporal (3.3)
and also spatial direction (cf. Sec. 4.1.1), respectively

k̂0 =
2π

L̂0

(

n0 +
1

2

)

, k̂1 =
2π

L̂1

n1, n0, n1 ∈ Z , (4.16)

acting on both Dirac components. The fields are rephrased as

ψ̂a(x̂0, x̂1) =
ψa(x0, x1)√

σ0
=
∑

n0,n1

ηan0,n1

e−i(k̂0x̂0+k̂1x̂1)
√

L̂0L̂1

, (4.17)

ˆ̄ψa(x̂0, x̂1) =
ψ̄a(x0, x1)√

σ0
=
∑

n0,n1

η̄an0,n1

e+i(k̂0x̂0+k̂1x̂1)
√

L̂0L̂1

. (4.18)

In these discrete Fourier series the dimensionless Grassmann variables ηan0,n1
, η̄an0,n1

have

entered. When studying only a finite number of modes, we set the cut-off to be π/L̂0,1

bigger than the largest momentum in every direction

k̂cut0 =
2π

L̂0

N0, k̂cut1 =
2π

L̂1

(

N1 +
1

2

)

. (4.19)

For the finite-mode regularisation, we start from the effective action (2.14) and insert
the mode expanded fermion fields (4.17) and (4.18) with inhomogeneous condensate hich
yields the most general expression of the action. However, for spatially non-uniform
σ̂(x1) the plane waves are no longer eigenfunctions of Q which means that the functional
log(detQ†Q) needs to be expanded in the plane wave basis of the fermionic fields. We
define the Hermitian matrix Q†Q in the functional basis ith factorising Gkµ

Gk̂0,k̂1 = Gk̂0Gk̂1 =
e∓i(k̂0x̂0)
√

L̂0

e∓i(k̂1x̂1)
√

L̂1

=
e∓i(k̂0x̂0+k̂1x̂1)
√

L̂0L̂1

(4.20)
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Furthermore, we carry out the computation of the matrix elements analytically

〈

Gk̂0,k̂1 |Q
†Q|Gk̂′0,k̂′1

〉

=
1

L̂0L̂1

∫

dx̂0

∫

dx̂1 e
i(k̂0x̂0+k̂1x̂1)

(

−γµ∂̂µ + γ0µ̂+ σ̂(x̂1)
)

×
(

+γµ∂̂µ + γ0µ̂+ σ̂(x̂1)
)

e−i(k̂
′
0x̂0+k̂

′
1x̂1) (4.21)

=
δk̂0,k̂′0
L̂1

∫

dx̂1 e
ik̂1x̂1

(

iγ0k̂0 + iγ1k̂1 + γ0µ̂+ σ̂(x̂1)
)

×
(

−iγ0k̂′0 − iγ1k̂
′
1 + γ0µ̂+ σ̂(x̂1)

)

e−ik̂
′
1x̂1 . (4.22)

where we inserted the definition of the integral representation of the Kronecker delta. The
result (4.21) does not require any specification of the boundary conditions on σ̂(x̂1) as
well as its ansatz. The simplest form of the chiral condensate is homogeneous σ̂(x̂1) = σ̂
which renders the matrix 〈Gk̂0,k̂1 |Q

†Q|Gk̂′0,k̂′1〉 block diagonal. The determinant reduces to

log det(Q†Q) = log







∏

k̂0,k̂1

det
[

(iγµk̂µ − γ0µ̂+ σ̂)(−iγµk̂µ + γ0µ̂+ σ̂)
]







= log







∏

k̂0,k̂1

[

(k̂20 + k̂21 + σ̂2 − µ̂2)2 + (2µ̂k̂0)
2
]






. (4.23)

where in the second line we utilised the factorisation of determinants of block diagonal
matrices. Linear terms in µ̂σ̂ have dropped because carrying out (4.23) gives only rise to
quadratic terms. Together with (2.14) and insertion of (4.17) and (4.18) with determinant
(4.23), we obtain a finite-mode regularised effective action

Seff
N

=
L̂0L̂1σ̂

2

2λ

− 1

2

N0−1∑

n0=−N0

N1∑

n1=−N1

log







[[
2π

L̂0

(

n0 +
1

2

)]2

+

[
2π

L̂1

n1

]2

+ σ̂2 − µ̂2

]2

+

[

2µ̂
2π

L̂0

(

n0 +
1

2

)]2
}

. (4.24)

The major difference to (4.7) appears in the finite-mode momenta (4.16) in contrast to
the ones on the lattice (4.4). Hence, also the sum extends symmetrically over the finite-
modes n0 ∈ [−N0, N0 − 1] and n1 ∈ [−N1, N1]. Likewise, in (4.26) the regulator of this
scheme is introduced via the aforementioned lattice cut-offs k̂cut0 , k̂cut1 (4.19) different in
both temporal and spatial direction k̂cut0 6= k̂cut1 . With this modification the effective action
is altered

Seff
N

=
2π2N0(N1 + 1/2)σ̂2

λk̂cut0 k̂cut1

−
N0∑

n0=1

N1∑

n1=−N1

log







[(

k̂cut0

n0 + 1/2

N0

)2

+

(

k̂cut1

n1
N1 + 1/2

)2

+ σ̂2 − µ̂2

]2

+

(

2µ̂k̂cut0

n0 + 1/2

N0

)2
}

. (4.25)

Conversely, upon minimisation of Seff of the discrete GN2 model in Eq. (4.25) with respect
to σ̂, we arrive at either the trivial solution σ̂ = 0 from (4.6) or solutions arising from the
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Fig. 4.5: (Right) Condensate σ as a function of the coupling λ for mode expanded fermions including
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2 for
number of lowest modes N1.

gap equation in the same manner as for the lattice regularisation scheme (4.7)

1

λ
=

2

L̂0L̂1

∑

n0,n1

[
2π
L̂0

(
n0 +

1
2

)]2
+
[
2π
L̂1
n1

]2
+ σ̂2 − µ̂2

[[
2π
L̂0

(
n0 +

1
2

)]2
+
[
2π
L̂1
n1

]2
+ σ̂2 − µ̂2

]2

+
[
4πµ̂

L̂0

(
n0 +

1
2

)]2
. (4.26)

with n0 ∈ [0, N0−1] and n1 ∈ [−N1, N1] reducing to its zero chemical potential expression

1

λ
=

2

L̂0L̂1

∑

n0,n1

[[
2π

L̂0

(

n0 +
1

2

)]2

+

[
2π

L̂1

n1

]2

+ σ̂2

]−1

. (4.27)

The latter gives rise to the phase diagram of the homogeneous fermion condensate. The gap
equations (4.7) and (4.26) allow to compare the two procedures on the lattice and in the
mode expansion, respectively. After a redefinition of the cut-offs (4.19) regarding a lattice
spacing namely k̂cut0,1 = 2π/â, we obtain the lattice equivalent of the action. Their momenta
still differ as seen in (4.4) for the lattice and (4.16) for the finite-modes. Nevertheless, in
the infrared regime L̂µ → ∞ both formulations are equivalent which also holds for the
UV limiting case (aσ0) → 0 when removing the regulator. Here the finite-mode formalism
also approaches lattice calculations. For fixed temperature and chemical potential both
regularisation schemes converge to the infinite-volume continuum result with O(â2). This
can be seen in Figures 4.1 and 4.5 where for a given temperature T̂ = 1/3 both formalisms
have identical scaling behaviour and positive sign lattice artefacts with an increase in the
cut-off (lattice spacing).

The aim for expanding in a finite number of modes is to approach continuum infinite-
volume results by still keeping computational resources low. The effective action (4.25)
is determined by choosing the free parameters λ, N0, N1, k̂

cut
0 , k̂cut1 in an optimal way to

minimise the number of finite modes N0, N1 and reduce finite size effects. As mentioned
for the lattice, we need a coupling constant renormalisation before computations become
comparable (cf. Sec. 4.2.1). In this context k̂cut0 and λ cannot be chosen independently
because the cut-off relation (4.19) imposes

k̂cut0 = 2πN0cT̂c, (4.28)

where N0c is the number of temporal modes matching the critical temperature T̂c. The
freedom in most of the parameters allows a more refined λ renormalisation where we can
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even tune a low number of modes k̂µ to closely retrieve analytic results from [7]. As usual,
we focus on zero chemical potential calculations µ̂ = 0 for the critical temperature T̂c and
maximal number of modes in temporal direction denoted as N00. First, to determine k̂cut0 ,
the gap equation (4.27) at µ̂ = 0 and T̂ = T̂c needs to satisfy σ̂ = 0 at the phase boundary

π2(N1 + 1/2)

λk̂cut0 k̂cut1

=
1

N0c

N0c∑

n0=1

N1∑

n1=−N1

[(

k̂cut0

n0 + 1/2

N0

)2

+

(

k̂cut1

n1
N1 + 1/2

)2
]−1

. (4.29)

Similarly at µ̂ = 0 and approximately T̂ = 0 the condensate assumes σ̂ ≈ 1

π2(N1 + 1/2)

λk̂cut0 k̂cut1

=

=
1

N00

N00∑

n0=1

N1∑

n1=−N1

[(

k̂cut0

n0 + 1/2

N0

)2

+

(

k̂cut1

n1
N1 + 1/2

)2

+ 1

]−1

. (4.30)

Consistency in λ demands equating the right-hand sides of Eqs. (4.29) and (4.30) which
recovers the dependence of k̂cut0 (N0c). Eventually one fixes the mode numbers N0c, N00,
N1 and k̂cut1 from where the resulting equation

N1∑

n1=−N1







1

N0c

N0c∑

n0=1

[(

k̂cut0

n0 + 1/2

N0

)2

+

(

k̂cut1

n1
N1 + 1/2

)2
]−1

− 1

N00

N00∑

n0=1

[(

k̂cut0

n0 + 1/2

N0

)2

+

(

k̂cut1

n1
N1 + 1/2

)2

+ 1

]−1





= 0 (4.31)

permits to compute k̂cut0 . Inserting the result into one of the gap equations (4.29) and
(4.30) at µ̂ = 0 produces the corresponding value for λ.
In comparison with the lattice formalism, we reproduce the same scaling plots regarding
the chiral condensate as a function of the coupling and the quadratic convergence of σ
depicted in Fig. 4.5. We observe a high similarity for the same amount of degrees of
freedom N1, namely lattice sites on the one hand and number of modes on the other hand.
As mentioned before, we also have lattice artefacts which are present in both models with
the same sign. The condensate’s scaling approaches a different asymptotic scaling curve.

The approach described in Sec. 4.1 allows us to keep track of both the effective actions
for the symmetric σ̂ = 0 and homogeneous broken phase σ̂ = const. The expected change
in the ordering results from an increased Seff[σ̂] due to the non-zero chiral condensate in
Eq. (4.25). The kink on the r.h.s. of Fig. 4.6 marks the upper spinodal line before the
second minimum in Seff vanishes for the trivial σ̂ = 0.
In Fig. 4.7 we present the plane wave expanded phase boundary for two spatial extents with
number of spatial modes N1 = 30 and N1 = 50 (degrees of freedom) and the corresponding
parameters summarised in Tab. 4.1. The method of the optimisation of k̂cutµ was adopted
from [10].

4.3.1 Matsubara Summation

In the previous calculation both the spatial as well the temporal extent of the box are
finite. In the following we present an alternative approach which permits to dispose of the
integration over the temporal direction. We adjust the momentum integrals of functions
f(k0,k)

∫
d2k

(2π)2
f(k0,k) → iT

∑

n

∫
dk

(2π)
f [i(ωn − iµ),k] , (4.32)
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Tab. 4.1: Optimised parameters for the finite-mode regularisation given a spatial number of modes N1

with critical number of temporal modes N0c, momentum cut-offs k̂cutµ and coupling constant λ.

N1 N0c k̂cut0 k̂cut1 λ

30 6 21.387 21.374 0.990

50 9 32.069 32.060 0.878
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Fig. 4.8: Contours over fermionic Matsubara modes iωn on the complex axis.

of the zero mode using k0 → 2π(n + 1/2)T ≡ ωn, n ∈ Z in agreement with (4.16).
Assuming that the fermion condensate is inhomogeneous with regard to spatial separations
only, an explicit integration over the temporal modes is performed using summation over
Matsubara frequencies. To evaluate the sum explicitly, one has to deal with expressions
of the form [31]

SF =
1

β

∑

iω

g(iω) . (4.33)

The sum can be rewritten as a contour integral under the use of a weighting function vβ
which exhibits simple poles at the desired ωn on the complex axis

SF =
1

2πiβ

∮

dz g(z)vβ(z) , (4.34)

where we chose the poles to be at z = iωn. The choice of the Matsubara weighting
functions is rather delicate. Two possibilities are either

v
(1)
β =

β

1 + e−βz
= βNF

β (−z) = β(1−NF
β (z)) (4.35)

v
(2)
β =

−β
1 + eβz

= −βNF
β (z) , (4.36)

where v
(1)
β and v

(2)
β handle the convergence of the integrand on ℜ(z) < 0 and ℜ(z) > 0

respectively. We rewrote the result by using the fermionic occupation numbers NF
β (z) =

1/(1 + exp(βz)). Otherwise regarding the denominator also

vβ =
1

2
tanh

(
βz

2

)

=
1− eβz

2(1 + eβz)
, (4.37)

becomes a valid candidate. The equivalence of the contour integral with the summation
over modes ωn allows to deform the contour as sketched in Fig. 4.8 such that

SF =
1

2πiβ

(

−
∫ i∞−ε

−i∞−ε
dz g(z)vβ(z) +

∫ i∞+ε

−i∞+ε
dz g(z)vβ(z)

)

. (4.38)

Furthermore, both individual integrations are decomposed into

∫ i∞−ε

−i∞−ε
=

∮

C1

−
∫

Γ1

and

∫ i∞+ε

−i∞+ε
=

∫

Γ2

−
∮

C2

, (4.39)

employing the fact that for |z| → ∞ both Γi contributions vanish requiring g(z)vβ(z) → 0.
Eventually the integrations encompass only poles originating from g(z)

SF = − 1

β

∑

z0∈g(z) poles

Res {g(z0)vβ(z0)} , (4.40)
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Fig. 4.9: Mode expanded phase diagram of the GN2 model assuming a homogeneous condensate σ̂ = const.
for (left) N1 = 30 and (right) N1 = 50 with Matsubara mode summation. The underlying solid line and
the tri-critical point µ̂tc show analytic results obtained from [7].

where now the change in orientation of the integrations is denoted by the additional minus
sign. To this end, the expression for the effective action becomes

Seff
N

=
σ2

2λ
− T

∑

n0

∫
dk1
2π

log
[
(ωn0

− iµ)2 + ω2
k1(σ)

]
, (4.41)

using ω2
k1
(σ) = k̂21 + σ̂2. In correspondence with Eq. (4.25) and its derived gap equation

(4.26) we trade the zero momentum k̂0 for the aforementioned Matsubara frequencies along
the imaginary axis and identify ωk1 and arrive at

L̂0

2λ
=

1

L̂1

∑

iωn0

N1∑

n1=−N1

−ω2
n0

+ ω2
k1

− µ̂2

[

−ω2
n0

+ ω2
k1

− µ̂2
]2

− 4µ̂2ω2
n0

. (4.42)

The procedure regarding the explicit summation now conveniently disposes of the sum
over temporal modes via the residues at the poles of the denominator.

L̂0

2λ
=

N1∑

n1=−N1

1

4ωk1

(

tanh

(
ωk1 + µ̂

2T̂

)

+ tanh

(
ωk1 − µ̂

2T̂

))

. (4.43)

Similarly the sum of Matsubara frequencies in the large-N approximation for the effective
potential itself reduces to

Seff
N

=
σ̂2

2λ
−

N1∑

n1=−N1

[ωk1(σ̂) (4.44)

+ T̂ log
(

1 + exp
{

−[ωk1(σ̂) + µ̂]/T̂
})

(4.45)

+ T̂ log
(

1 + exp
{

−[ωk1(σ̂)− µ̂]/T̂
})]

. (4.46)

Eventually the integral over spatial modes is discretised again in the mode expanded field
momenta (4.16). The resultant phase boundary in Fig. 4.9 is obtained using the same
parameters for the k̂cut1 cut-off and also the number of degrees of freedom in the spatial
direction from Tab. 4.1.
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4.3.2 Spatially Inhomogeneous Condensate using Finite-Modes

We have already obtained the inhomogeneous phase boundary on the lattice in Fig. 4.4
where we compared the results with the proposed analytical result [45] in the kink-crystal
phase σ(x1) using the Lamé potential [46] as an ansatz

σ(x1) = Aκ2
sn(Ax1, κ)cn(Ax1, κ)

dn(Ax1, κ)
, (4.47)

denoting Jacobi elliptical functions sn, cn =
√
1− sn2 and dn =

√
1− κ2sn2 with modulus

κ. Therefore, the space of physical values (µ̂, T̂ ) is mapped onto the two-dimensional space
in (κ,A) ∈ (0, . . . , 1, 0, . . . ,∞) such that κ and A are analytic functions in T̂ and µ̂. When
permitting an inhomogeneous condensate σ̂(x̂1) its expansion is of the same form as the
fermion fields (4.18, 4.17)

σ̂(x̂1) =
σ(x1)

σ0
=

M∑

m=−M
σm

e−ip̂x̂1
√

L̂1

, p̂ =
2π

L̂1

m , σ+m = (σ−m)∗ , (4.48)

which admits 2M + 1 degrees of freedom because of the Hermiticity among coefficients.
The accuracy in the expansion of both the fermionic fields and the condensate is not
arbitrary and its relation is explained in Rem. 4.1.

Remark 4.1 The oscillatory frequency of eigenfunctions of Q†Q for low eigenvalues will
be higher than those of the interpolating function σ(x1). Thus, the assumption of M ≪ N1

in comparison to fermionic fields becomes sufficient [30]. In turn, functions ψa must still
be able to approximate the eigenfunctions such that the discrepancy in degrees of freedom
is justified.

Recall that the inhomogeneity of σ̂(x̂1) spoils the simple expansion of the determinant
with ψa eigenfunctions of Q†Q. Proceeding from the generic case of the matrix elements
(4.21) and after integration over x̂0, we arrive at the Hermitian matrix

〈

Gk̂0,k̂1 |Q
†Q|Gk̂′0,k̂′1

〉

=
δk̂0,k̂′0
L̂1

∫

dx̂1 e
ik̂1x̂1

×
(

iγ0k̂0 + iγ1k̂1 + γ0µ̂+
M∑

m=−M
σm

e−ip̂x̂1
√

L̂1

)

×
(

−iγ0k̂′0 − iγ1k̂
′
1 + γ0µ̂+

M∑

m′=−M
σm′

e−ip̂
′x̂1

√

L̂1

)

e−ik̂
′
1x̂1 . (4.49)

And its analytical evaluation at the delta functions

〈

Gk̂0,k̂1 |Q
†Q|Gk̂′0,k̂′1

〉

= δk̂0,k̂′0

[

I2δk̂1,k̂′1

(

k̂20 + k̂21 + µ̂2
)

+
I2

L̂1

M∑

m=−M
σp̂(m)σk̂1−k̂′1−p̂(m)

+ 2µ̂

(

γ0
σk̂1−k̂′1
√

L̂1

− iγ5k̂1δk̂1,k̂′1

)

+ γ1
σk̂1−k̂′1
√

L̂1

(

k̂1 − k̂′1
)
]

. (4.50)

The sparsity of the matrix (4.50) is bounded by condensate’s expansion coefficients σm
and exhibits an overall block-diagonal structure. Thus, the determinant is split into a
product over determinants of sub-matrices at equal zero momenta k̂0 = k̂′0 which becomes
a sum over logarithms. The resulting matrices are computed using a LU-decomposition
and are only dependent on the number of low lying spatial modes (2N1 + 1) and the two
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σ̂ = σ̂(x̂1) for (left) N1 = 30 and (right) the corresponding lowest eigenvalue λmin of the Hessian at
T̂ = 0.227. The underlying line and the tri-critical point µ̂tc show analytic results obtained from [45].

Dirac spinor components in (1 + 1) dimensions with 2(2N1 + 1) elements.
The relaxation of translational invariance enables the minimisation of the effective action
to be even lower than in the homogeneous cases before. Thus, we monitor the lowest
eigenvalues of the Hessian matrix

Hm,m′ =
∂

∂Σm

∂

∂Σm′
frSeffN

∣
∣
∣
σ̂=0

(4.51)

assuming real Σ2m = ℜ(σm) and imaginary Σ2m+1 = ℑ(σm) parts such that 0 < m,m′ ≤
M . The analysis is set in the homogeneous vacuum σ̂ = 0 corresponding to σm = 0 ∀m ∈
M . After derivation w.r.t. the Σm and using Jacobi’s formula

δ detA = Tr(adj(A)δA), (4.52)

valid in arbitrary dimensions and where adj(A) = (detA)A−1 the Hessian amounts to

Hm,m′ =
2L̂0

λ
δm,m′

+

N0−1∑

n0=0

Tr

[

(Q†Q)−1 ∂
2(Q†Q)

∂Σm∂Σm′
− (Q†Q)−1∂(Q

†Q)

∂Σm
(Q†Q)−1∂(Q

†Q)

∂Σm′

]

σ̂=0

. (4.53)

The reason for inspecting the lowest eigenvalue of the Hessian in (4.51) is that a negative
sign is associated with the possibility to further lower the effective action. In other words,
the effective curvature in Seff is also negative and subject to inhomogeneous perturbations.
In the mode expansion the latter takes a simple representation and can be written in closed
form demonstrated in App. B.4. Also there is no effect of whether we assume a real kink
crystal with periodic (4.47) or anti-periodic (twisted kink) boundary conditions as the
effect only results in a change of k̂1 which is not affecting the Hessian matrix.
The finite spatial extent L̂1, however, provokes a non-monotony of its lowest eigenvalue
due to non-commensurability of the period of the analytic solution (4.47) and L̂1. In
other words, if L̂1 is an exact multiple of the period of σ̂(x̂1) no finite size effects are
observed. For all other values the lowest eigenvalue exhibits an oscillatory behaviour. To
circumvent this obstacle, we use a third order interpolation by matching first derivates at
the midpoints between kinks in Fig. 4.10. In the thermodynamic limit where the space
dimension reaches infinity L̂1 → ∞ the resulting curve becomes smooth. In accordance
with Rem. 4.1 we pick M = 5 in (4.48) which is reflected in Fig. 4.10 as values of µ̂ & 1.0
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yield unreliable results in the right phase boundary. The reason for this is that the amount
of basis functions of the chiral condensate in (4.48) fails to approximate the increasing
oscillations when advancing in chemical potential.

Anti-Periodic Condensate

Our assumptions where yet independent of the exact shape of the condensate. However, we
were following the proposed twisted-kink ansatz from Sec. 4.1.1 with its implementation
in the finite-mode approach.
In the light of the discrete γ5-symmetry in (2.17) the ansatz was justified to topologically
stabilise the single kink state and interpolate between the two vacua. Hence, an extra γ5-
matrix for the fermion fields at the spatial boundaries is introduced forcing the condensate
to become anti-periodic. Similarly to the quantisation of the initial momenta k̂µ before

(4.16), the condition on k̂1 now arises through demanding

eik̂1x̂1 = γ5e
ik̂1(x̂1+L̂1) , eik̂1L̂1 = γ5e

i2πn1 . (4.54)

In the chosen representation (cf. Sec. 2.1.1) this causes a mixing of the Dirac components
of the spinors in the spatial momentum where the matrix logarithm gives log(γ5) =

π
2γ5

and

k̂1 =
2π

L̂1

(

n1I2 −
iγ5
4

)

, (4.55)

is equipped with an additional γ5-term. Besides, the expansion of the condensate (4.48)
is adapted adequately to anti-periodicity

σ̂(x̂1) =
1

√

L̂1

M∑

m=1

(

σme
−ip̂x̂1 + σ−meip̂x̂1

)

, σ+m = (σ−m)∗ , (4.56)

with σ̂(0) = 1√
L̂1

∑

m(σm+σ−m) = −σ(L̂1) which disposes of the constant σ0 contribution

in (4.48).

4.3.3 Plane waves and pseudoparticles

We explored the advantages of a finite-mode expansion over the formalism on the lattice
in a reduced number of degrees of freedom M for higher approximation of the condensate.
Let us now delve into the proposed pseudoparticle formalism introduced in Ch. 3. In
comparison, both the mode and pseudoparticle expansion (3.1) appear to be quite similar.
However, plane waves lack the most significant property of what defines a pseudoparticle:
space-time localisation. In order to make the difference obvious, we revisit the Q†Q-
regularisation (cf. Sec. 3.1.1) and define eigenvalues λn of eigenfunctions ψn

Q†Qψn = λnψn . (4.57)

From the Hermiticity of Q†Q (2.15), we know that these λn will be real-valued and positive
definite. Typically the V (φ) term in the Q-operator (2.4) will be bounded such that for
high λn plane waves of kind ψn ≈ ηeikx will be approximate eigenfunctions of Q†Q and
the influence of the bosonic field φ is diminished. However, this does not hold for small
eigenvalues λn. We will refer to them as low lying eigenvalues and assume that there exist
only finitely many of them. Here the dependency on the bosonic fields φ will be high.
It would then be favourable to conduct the minimisation of the effective action based
on a small number of these low lying eigenvalues. We will see that plane waves and
pseudoparticles show approximately the same behaviour for small λn. In the convenient
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4. Regularisation of the discrete GN2 Model

diagonalised determinant of the fermion matrix (3.10) one can approximate low lying
eigenfunctions using pseudoparticles

G̃n ≈ ψn (4.58)

such that eigenvalues µn in (3.10) become

µn =
〈

G̃n|Q†Q|G̃n
〉

≈ λn . (4.59)

For the fermion determinant in the Q†Q-regularisation this means that both the con-
tribution of the pseudoparticles as well as the one from the plane waves are equivalent.
Nevertheless, this changes for high λn where the pseudoparticle functions G̃n are now a
superposition of the ψn and eigenvalues µn > λn. The effect on the partition functions
is negligible as the resulting contribution is merely an additional constant in the effective
action that has no impact on the minimisation.
We can conclude that the discrepancies between the two approaches based on plane waves
and pseudoparticles are mostly present for high eigenvalues (4.57). By choosing a set of
pseudoparticles as a basis for the fermionic fields ψa and the condensate there might be a
chance that we have better overlap with the operator Q†Q and presumably less low lying
eigenmodes are needed as conjectured from Fig. 3.2.

Following the usage of plane waves as pseudoparticles, we will now consider localised
pseudoparticles, namely B-splines. This approach will bridge the discussion before mi-
grating to Daubechies wavelets.

4.4 B-Spline Pseudoparticles

This first part of the section is devoted to the homogeneous chiral condensate similar to
what we discussed on the lattice and for plane waves. Based on our specific choice of
an anti-symmetric condensate (cf. Sec. 4.1.1) in the mode expansion, we use products of
anti-periodic B-spline bases functions which is now achieved on simpler terms applying
Eq. (3.17)

Gk0,k1(x̂0, x̂1) = Nap
2,k0

(x̂0)N
ap
2,k1

(x̂1) , (4.60)

where k0 = 0, . . . , L̂0 − 1 and k1 = 0, . . . , L̂1 − 1. Hatted quantities are kept dimensionless
in terms of σ0. The total volume of space-time L̂0×L̂1 is determined by integers L̂0 and L̂1

to ensure a uniform distribution of basis functions in space-time. The zero basis function
G0,0 is illustrated in Fig. 4.11. How is the choice of B-spline pseudoparticles justified on
computational efficiency? On the one hand, the basis functions are piecewise polynomial

and derivatives and overlap integrals in
〈

Gk0,k1 |Q†Q|Gk′0,k′1
〉

are known analytically from

Eq. (3.19). On the other hand, their finite support renders the fermion matrix sparse. The
most general effective action (3.13) in the pseudoparticle approach and Q†Q-regularisation
for the discrete GN2 model is

Seff
N

=
1

2λ

∫

d2xσ2 − 1

2
log
(

det
〈

Gk0,k1 |Q†Q|Gk′0,k′1
〉)

, (4.61)

which is independent of the choice of any pseudoparticle candidate. The regularised theory
undergoes the same coupling renormalisation for λ at fixed L̂0c as discussed on the lattice
and for finite-modes (cf. Sec. 4.2.1). We show the scaling of the coupling dependent on the
chiral condensate for different box sizes in Fig. 4.12. To compare the subsequent analysis,
we fix a coupling constant λ = 1.542 and reproduce the homogeneous phase boundary by
monitoring the effective action for the two solutions I,II. This survey was done for L̂1 = 30.
For the spatially inhomogeneous case, we proceed similar as with the expansion in finite
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4.4. B-Spline Pseudoparticles

Fig. 4.11: B-spline pseudoparticle G0,0 of degree j = 2 as a function of (x̂0, x̂1) depicted as a (left) 3D
Plot and (right) contour plot.

Fig. 4.12: (Right) B-spline pseudoparticle phase diagram of the GN2-model assuming a homogeneous
condensate σ̂ = const. for L̂1 = 30 and (left) σ̂ as a function of the coupling λ.
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Fig. 4.13: Phase diagram of GN2 model using B-spline pseudoparticles of degree j = 2 assuming an
inhomogeneous condensate σ̂ = σ̂(x̂1) for (left) L̂1 = 30. (Right) The corresponding lowest eigenvalue
λmin of the Hessian at T̂ = 0.227. The underlying line and the tri-critical point µ̂tc show analytic results
obtained from [45].

modes of the chiral condensate in (4.48). We restate the latter as a composition of anti-
periodic B-spline pseudoparticles

σ̂(x̂1) =
σ(x1)

σ0
=

hatL1
3

−1
∑

m=0

σmN
ap
2,m(x̂1) . (4.62)

employing a uniform knot vector in (3.16) with m = 3 of the type tk = k L̂1

3 = 3k which

requires 3 to be a divisor of L̂1. Notably the difference in number of degrees of freedom
between fermionic fields ψa and the non-uniform condensate (4.62) is built on the same
idea mentioned for the plane waves in Rem. 4.1. Thus, it becomes necessary to have a finer
scale for fermionic fields in comparison to the condensate which in our case was chosen to

be a factor of three with M = L̂1

3 − 1 in Eq. (4.62).
With the value for the coupling from its renormalisation λ = 1.542, we continue to explore
the phase boundary. The left phase boundary (I–III) is reconstructed by a brute-force
minimisation of the action to retrieve the solution of Seff in region III and find the point
where the ordering changes. Furthermore, we inspect the right regime by computing the
Q†Q-regularised Hessian in the homogeneous vacuum σ̂ = 0

Hm,m′ =
∂

∂σm

∂

∂σm′

Seff
N

∣
∣
∣
σ̂=0

, (4.63)

based on the same arguments regarding instabilities from negative eigenvalues. The result-
ing plot of the lowest eigenvalue of the Hessian matrix (4.63) is shown in Fig. 4.13 where
also the characteristic fringes due to finite size effects are present. We obtain reliable
results up to a chemical potential of µ/σ0 ≈ 1.0. However, for higher values of µ̂, we know
that the frequency of the condensate σ̂(x̂1) increases as the quark density also increases.
This reflects the fact that the condensate is no longer presentable with the corresponding
order of approximation in (4.62) and one ha to use a higher number of degrees of freedom
therein.
The scenario in Fig. 4.13 is very much in agreement with Fig. 4.10 using plane waves which
suggests that both formalisms are identical in the infinite-volume continuum limit.
Compared to the finite-mode expansion there was no need to introduce a regulator so far
i.e. a cut-off or a lattice spacing. Their use was implicit in the uniform distribution of
basis functions on the computational domain [0, L̂µ−1] and the corresponding knot vector.
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4.5. Wavelet Pseudoparticles

Fig. 4.14: Daubechies D5 Wavelet pseudoparticle G0,0 of genus g = 5 as a function of (x̂0, x̂1) depicted
as a (left) 3D Plot and (right) contour plot.

While in the mode expansion the oscillatory behaviour of σ̂(x̂1) was tuned by the number
of low lying eigenmodes now the number of uniformly translated basis functions defines
how accurately the function is encoded and therefore can exhibit higher frequencies.
This reasoning will become more apparent and controllable for the usage of wavelets where
we encounter the additional dimension of scale j which will serve as the regulator.

4.5 Wavelet Pseudoparticles

At last, we consider the wavelet pseudoparticles as a regularisation prescription for the
discrete GN2 model. Driven by the analogy of higher dimensional wavelets in Eq. (3.45)
the anti-periodic scaling functions from (3.78) simply factorise

Gk0,k1(x̂0, x̂1)W
ap
j0,k0

(x̂0)W
ap
j0,k1

(x̂1) , (4.64)

with j0 = 0. We present the zero translated Daubechies D5 (g = 5) basis wavelet G0,0 in
Fig. 4.14 where we can clearly observe its finite support along a space-time extension of
[0, 2g − 1] = [0, 9]. On top to our motivation for B-splines choosing orthonormal finitely
supported wavelets, the sparsity of the fermionic matrix Q†Q increases. With anti-periodic
boundary conditions of the analytic ansatz of the condensate (4.47), we examine the perfor-
mance of the three proposed pseudoparticles: plane waves (actually not a pseudoparticle),
B-splines and wavelets. These serve simultaneously as a basis for the Q†Q-matrix and the
chiral condensate σ̂(x̂1). Especially for wavelets a mixing with other functional bases is
not desirable as overlap derivative integrals (3.52) are only known among wavelet basis
functions.
In this benchmark calculation, we approximate the interpolating σ̂(x̂1) at a given temper-
ature T̂ = 0.141 nd chemical potential µ̂ = 0.65 the kink regime close to the left phase
boundary (I–III). To this end, we scan the error ǫ computed using the L2-norm between
the analytic solution and the primed σ̂′(x̂1) pseudoparticle expanded condensate

ǫ = ‖σ̂(x̂1)− σ̂′(x̂1)‖L2 =

√
∫ L1

0
|σ̂(x̂1)− σ̂′(x̂1)|2 . (4.65)

All three errors are reproduced in Fig. 4.15 show that the localised nature of pseudopar-
ticles yields a higher convergence already. For the special case of M = 10 basis functions
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Fig. 4.15: T̂ = 0.141 and µ̂ = 0.65. (Left) Error convergence from Eq. (4.65) of different pseudoparti-
cle candidates towards and anti-periodic condensate for (green) B-splines, (blue) plane waves and (red)
Daubechies Dg wavelets. (Right) D10 wavelet approximation of the analytic anti-symmetric kink solu-
tion [8].

(degrees of freedom) the wavelet approximation displays even higher accuracy with in-
creased genus g at the cost of enhanced computational effort. In the same Figure 4.15,
we show the approximation of the chiral condensate based on the Daubechies D10 wavelet
family with uniform distribution at scale j0 = 0.

4.5.1 The Regulator in the Wavelet Approach

Results from Fig. 4.15 tell us that there exists an explicit choice to regularise the theory
based on two parameters, (i) the scale j and the (ii) genus g of the wavelet family. The
latter is tantamount to the accuracy at every scale j. How is the difference between scales
implemented following Rem. 4.1? For this thesis, we will basically restrict ourselves to
pseudoparticle basis functions Gk for the fermionic fields ψa and the condensate, where
both are of the same genus g. In other words, they have the same number of vanishing
moments N = 2g in Eq. (3.23) i.e. level of approximation. The choice of j turns out
to be more delicate. One aims for a condensate with less oscillatory frequency than the
fermionic basis functions which means that we have to choose the scale jσ for σ̂(x̂1) to be
at least jσ < j0 where j0 = 0 is the scale of the ψas. The great advantage from the wavelet
orthonormality conditions (3.34) – (3.36) is the possibility to fully expand the condensate
including even wavelet mother functions such that the decomposition becomes exact like
in (3.40).
On the other hand, one still has to deal with derivative overlap coefficients which also
become very simple as from (3.61) we know that only contributions from the same scale
jσ = j0 are relevant. This reduces the computation significantly because the only surviv-
ing connection coefficients arise from overlaps 〈φjσφj0〉 and 〈ψj0φj0〉. For the remaining
discussion, we will only regard scaling function contributions which we know well from
Sec. 3.3.4

σ̂(x̂1) =
σ(x1)

σ0
=

2jσ L̂1−1∑

m=0

σmW
ap
jσ ,m

(x̂1). (4.66)

Effectively the chiral condensate and the fermionic fields then differ by one scale jσ = j0−1.
In pursuit of low computational cost, we are also employing Daubechies wavelets of genus
g = 3 i.e. D3 where the derivative couplings (3.52) are computed exactly. Note that this
is the lowest order in g where this is possible (cf. Rem. 3.3).

Equipped with this knowledge, we tackle the homogeneous case with the effective ac-
tion (4.61). This involves the usual coupling constant renormalisation based on the choice
of the critical temperature, temporal box length L̂0c = 5, from which we check the depen-
dence of the condensate on the coupling and compute the value of λ at the point where
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4.5. Wavelet Pseudoparticles

Fig. 4.16: (Right) D3 wavelet pseudoparticle phase diagram of the GN-model assuming a homogeneous
condensate σ̂ = const. for L̂1 = 30 and (left) σ as a function of the coupling λ.
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Fig. 4.17: Phase diagram of GN2 model using Daubechies wavelet pseudoparticles D3 of genus g = 3
assuming an inhomogeneous condensate σ̂ = σ̂(x̂1) for (left) L̂1 = 30 and (right) the corresponding lowest
eigenvalue λmin of the Hessian at T̂ = 0.227. The underlying line and the tri-critical point µ̂tc show analytic
results obtained from [45].

σ just vanishes such that λ = 1.616. We present this procedure similar to the previous
regularisation schemes in Fig. 4.16 with spatial box size of L̂1 = 30. The phase boundary
between the homogeneously restored (I) and broken phase (II) results from checking again
the ordering of the minimal effective actions along µ̂ and is illustrated in Fig. 4.16. Com-
pared to the B-spline approach the Hermitian fermion matrix Q†Q is much sparser because
of the orthogonality of scaling functions (3.34) and the finitely supported derivative over-
lap coefficients (3.52). Therefore, the computational costs of the log detQ†Q evaluation
is of the same order as for the plane wave expansion. Additionally, results show higher
agreement with the analytically obtained boundary [7] for even lower number of degrees
of freedom.
Let us now consider the augmentation towards a non-uniform condensate σ̂(x̂1) with ex-
pansion from (4.66) in accordance to λ = 1.616 with the same procedure for solutions
(I–III). Both boundaries in Fig. 4.17 are obtained through a straightforward minimisation
of the effective action w.r.t. the condensate expansion coefficients σm in (4.66).
In comparison with plane waves in Fig. 4.13 and B-splines in Fig. 4.10 the obtained in-
homogeneous phase boundary in the wavelet formalism Fig. 4.17 has better agreement in
the tail of the boundary between (I) and (III) around µ̂ ≈ 1.0. This indicates a higher
accuracy in the approximation of the condensate at higher oscillations when µ̂ increases.

51



4. Regularisation of the discrete GN2 Model

Fig. 4.18: Effective action Seff[µ̂] in the wavelet pseudoparticle approach of the GN2 model with two
changes in ordering at temperatures (left) T̂ = 0.186 and (right) T̂ = 0.155 for symmetric homogeneous
σ̂ = 0, inhomogeneous σ̂ = σ̂(x̂1) and broken phase σ̂ 6= 0. Spatial extent L̂1 = 30.

Fig. 4.19: Effective action Seff[µ̂] in the wavelet pseudoparticle approach at the right phase boundary with
change in ordering at temperatures (left) T̂ = 0.186 and (right) T̂ = 0.155 for symmetric homogeneous
σ̂ = 0, inhomogeneous σ̂ = σ̂(x̂1) and broken phase σ̂ 6= 0. Spatial extent L̂1 = 30.

To get an idea of the ordering of the effective actions along the direction of the chemical
potential µ̂, we show the situation in Fig. 4.18 for the two cases of T̂ = 0.186 in the left
panel and T̂ = 0.155 in the right panel. Contrarily to the mode expansion in Fig. 4.6, we
encounter the inhomogeneous solution (green) that energetically stabilises the action in
the region between the two grey horizontal lines which mark the resultant phase boundary
for a given temperature T̂ . The second change of ordering marks a second order phase
transition from the crystalline phase to the symmetrically restored phase which coincides
with the right phase boundary in Fig. 4.17 (left).
The second phase transition at µ > µtc is of special interest because we will also investi-
gate it in higher dimensions and its existence is crucial for an emergent crystalline phase.
Thus, we also show a zoomed version for the same two temperatures as before in Fig. 4.19.
For lower temperatures the difference in the effective action becomes less apparent after
the crossing of the solutions at µ̂ of the right phase boundar between (III) and (I). We
also see that the homogeneous (blue) and symmetrically restored (red) solutions coincide
while the inhomogeneous (green) curve is no longer energetically favoured.
For right part of the phase boundary, we also employ the optional inspection of the Hessian
(4.63) for σm = 0, ∀m. Compared to the B-splines it is delicate to set up the functional

determinant and the matrix elements
〈

Gk0,k1 |Q†Q|Gk′0,k′1
〉

because they are based on the

derivative overlap integrals defined in Sec. 3.3.4. Similar to (4.21) we have

〈

Gk0,k1 |Q†Q|Gk′0,k′1
〉

=

∫

dx̂0

∫

dx̂1W
ap
j0,k0

(x̂0)W
ap
j0,k1

(x̂1)
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×



γ0∂̂0 + γ1∂̂1 + γ0µ̂+

2jσ L̂1−1∑

m=0

σmW
ap
jσ ,m

(x̂1)





†

×



γ0∂̂0 + γ1∂̂1 + γ0µ̂+

2jσ L̂1−1∑

m′=0

σm′W ap
jσ ,m′(x̂1)



W ap
j0,k′0

(x̂0)W
ap
j0,k′1

(x̂1) .

(4.67)

The integration over x̂0 is independent of the expansion of the condensate due to fac-
torisation of the pseudoparticle basis functions in (4.64). Therefore, we can carry out
the calculation using integration by parts. The resulting expression is tantamount to the
explicit calculation in the mode expansion

〈

Gk0,k1 |Q†Q|Gk′0,k′1
〉

= I2δk1,k′1Ω
k0
k′0

+ δk0,k′0



I2



Ωk1
k′1

+ µ̂2δk1,k′1 +

2jσ L̂1−1∑

m=0

σmσk1−k′1−m





+ 2µ̂
(

γ0σk1−k′1 + γ5Γ
k1
k′1

)

+ γ1

2jσ L̂1−1∑

m=0

σm

(

Υk1
k′1−m

+Υ
k′1−m
k1

)



 . (4.68)

The Υk
l in (4.68) correspond to the tri-linear connection coefficients presented in Eq. (3.58).

They arise from integrals over derivates of the Q†Q basis functions and the expanded
condensate. We can identify the different terms from (4.50). The connection coefficients
are implemented and calculated using the algorithm presented in Sec. 3.3.4. The arising
curve of the lowest eigenvalue λmin of the Hessian (4.63) in Fig. 4.17 (right) exhibits the
usual fringes for small box sizes that eventually become smooth when taking the infinite-
volume limit as discussed in Fig. 4.10 and 4.13.

4.5.2 An Unbiased Wavelet Algorithm

The application of wavelets as a pseudoparticle regularisation scheme of the discrete GN2

model allowed to reproduce correctly the inhomogeneous phase boundary [8]. Following
this idea, we propose to use the algorithm for higher dimensionality of the model i.e. the
GN4 model (cf. Sec. 2.1.4). The extension will be straightforward and no Pauli-Villars
regularisation is needed as elucidated above. We follow the proposed algorithm from
Sec. 4.1.1 consisting of

(i) Coupling constant renormalisation of λ

(ii) Choose anti-periodic solution σ̂ = 0, σ̂ = const., σ̂(x̂1)

(iii) Minimisation of the effective action Seff with respect to expansion parameters of the
condensate

(iv) Monitor Seff along the chemical potential µ̂ or temperature T̂

(v) Determination of the phase boundary from the change in ordering of Seff

With the outline of an effective regularisation scheme in (1 + 1) dimensions, we finally
advance to a more QCD-like scenario in (3 + 1) dimensions, the GN4 model.
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Chapter 5

Regularisation of the GN4 Model

Succeeding the reproduction of the analytically known phase boundary of the GN2 model
as an exemplary introduction of the wavelet pseudoparticle regularisation, the following
Chapter is dedicated to models in (3 + 1) dimensions (cf. Ch. 2). We will first discuss the
regularisation of the discrete GN4 model using the algorithm proposed in the preceding
Chapter in order to obtain its phase boundary.

5.1 Phase Diagram of the GN4 Model

Our choice of ansatz in the expansion of the inhomogeneous condensate is motivated from
its equivalent in (1+1)d in (4.66). Furthermore, the chiral condensate σ(x) depends only on
the spatial coordinates x = (x1, x2, x3). We are then interested in the energetically most
favourable field configuration. It has been conjectured that ansätze consisting of more
than one spatial coordinate are not always favoured [47, 25]. Nevertheless, we restrict
ourselves to the additional assumption of a diagonally inhomogeneous condensate in all
spatial directions

σ(x1, x2, x3) =

2jσL3−1∑

m=0

σmW
ap
jσ ,m

(x1)W
ap
jσ ,m

(x2)W
ap
jσ ,m

(x3), (5.1)

with equal extent L1 = L2 = L3. Note, that off-diagonal parts of the condensate are
neglected in the expansion (5.1). The field configuration that dominates the partition
function Z will therefore yield an effective action Seff that will be lower than in the general
case where σm = σk,l,m. The factorisation of the wavelet basis functions in (5.1) signifies
that only connection coefficients up to the trilinear form of (3.58) are needed.
As the phase boundary in (3 + 1)d is analytically unknown the goal will be to check the
stability of the three dimensional crystal phase with our wavelet-product ansatz. This
means, we need to examine the minimised effective action for all three solutions over the
whole regime of µ and infer its ordering for µ→ ∞. The corresponding effective action is
equivalent to (4.61) in (3 + 1) dimensions

Seff
N

=
1

2λ

∫

d4x σ2 − 1

2
log
(

det
〈

Gk0,k1,k2,k3 |Q†Q|Gk′0,k′1,k′2,k′3
〉)

, (5.2)

with anti-periodic wavelet scaling basis functions Gk0,k1,k2,k3 = Gk0Gk1Gk2Gk3 motivated
from extension of the factorisation in Eq. (3.45) to four space-time dimensions

Gk0,k1,k2,k3(x0, x1, x2, x3) =W ap
j0,k0

(x0)W
ap
j0,k1

(x1)W
ap
j0,k2

(x2)W
ap
j0,k3

(x3). (5.3)

As for the (1+1)d case the scale of the fermion fields is j0 = 0. We consider the algorithm
in Sec. 4.5.2 starting with the coupling constant (renormalisation) λ = 1.156 at spatial
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5.1. Phase Diagram of the GN4 Model

Fig. 5.1: Phase diagram of discrete GN4 model using Daubechies wavelet pseudoparticles D3 of genus
g = 3 assuming (left) a homogeneous condensate and (right) an inhomogeneous condensate σ = σ(x) in
(5.1) for L1 = L2 = L3 = 50.

box size L3 = 50 and critical temporal extension L0c = 5. With these parameters and the
regulator in wavelet approach jσ = j0 − 1 we can minimise the effective action (5.2) w.r.t.
the coefficients σm in the decomposition (5.1).
The effective action evaluated at this solution (III) is compared with the two other solutions
akin to the procedure in two dimensions. In Fig. 5.1 we show the resulting phase boundary
between solutions (I) and (II) in the left panel and between (I) and (III) in the right panel.
The shape resembles the homogeneous phase diagram of the (1 + 1)d discrete GN2 model
with no indication of a third phase right to the critical chemical potential µc.
The study is again based on the inspection of the ordering of the free energy for all
three solutions (I–III) as illustrated in Fig. 5.2 for two values of the chemical potential
namely µ = 320 MeV (left) and µ = 600 MeV (right). We observe that the σ = 0
solution is favoured for all temperatures while the effective action associated with σ(x)
is always higher. Technically this is analogous to Fig. 4.18. This would rule out an
energetically favourable crystal phase for intermediate chemical potential similar to the
discrete-symmetric GN2 model given the specific but unbiased ansatz in (5.1).
To justify this conjecture, we monitor the difference of the effective actions ∆Seff for the
two solutions of inhomogeneous σ(x) and zero condensate at T = 20 MeV in the region
right of the critical chemical potential (µc, T = 0) as plotted in Fig. 5.3. The resultant
behaviour shows an increasing discrepancy for higher µ such that the solution in the
symmetrically restored phase becomes more and more energetically stable. Effectively the
solutions drift apart when refining the ansatz of the condensate and including more degrees
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Fig. 5.2: Ordering of the effective action Seff[T ] in the wavelet pseudoparticle approach of the GN4

model at two values of the chemical potential (left) µ = 320 MeV and (right) µ = 600 MeV for symmetric
homogeneous σ = 0, inhomogeneous σ = σ(x) and broken phase σ 6= 0. Spatial extent L1 = L3 = L3 = 50.
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5.2. Summary and Conclusion

of freedom M in the expansion. For the prevailing parameters, we found no evidence of
the proposed crystal phase and could rule out an emergent inhomogeneous island [10] for
regions of high µ.

5.1.1 Implications on the NJL model

For the NJL model the condensate can rotate as a function of spatial coordinates [5]. Our
simple ansatz of a chirally twisted kink solution motivated in Sec. 4.1.1 might not hold
anymore as it was specifically tailored for a Z2-symmetry. Therefore, one might use a
different ansatz which is still more general than a CDW. Such a choice would be using
periodic boundary conditions for all three spatial directions. Also here one can obviate the
renormalisation by only looking at the minimal value of the corresponding effective action
(2.58) in the wavelet formalism. Also the pion-like field combinations in the Lagrangian
density Eq. (2.53) will condense because the NJL model is a quark-meson model. This
yields another three additional condensates that enter the minimisation accordingly to the
proposed wavelet based algorithm.

5.2 Summary and Conclusion

This thesis is merely an exploratory search for a stable unbiased determination of phase
boundaries of effective quark-based QCD models. However, we have not yet exploited the
full extent of the wavelet pseudoparticle approach. One possibility would be a transla-
tionally invariant condensate where the expansion coefficients also factorise σm → σk,l,m.
Now the sum in (5.1) individually extends over all three spatial directions. Hence, the
condensate becomes

σ(x1, x2, x3) =

2jσL3−1∑

k,l,m=0

σk,l,mW
ap
jσ ,k

(x1)W
ap
jσ ,l

(x2)W
ap
jσ ,m

(x3), (5.4)

employing L1 = L2 = L3. Possibly this change permits extra inhomogeneous perturbations
with a decreased contribution from the diagonal coefficients σk,l,m where k = l = m as
off-diagonal terms were not allowed during the previous calculation. This could possibly
produce an effective action that is energetically favoured at high densities. Optionally to
the account of Sec. 4.1.1 the condensate in (3 + 1)d can be decomposed using a cubic-
centered crystal i.e. a periodic function σ̂ that has a negative sign at the midpoint of the
lattice

σ(x1, x2, x3) = σ̂(x1, x2, x3)− σ̂
(
x1 +

L3

2 , x2 +
L3

2 , x3 +
L3

2

)

σ̂(x1 + L3, x2, x3) = σ̂(x1, x2, x3) . (5.5)

In subsequent analyses this choice might eventually become more stable and is in favour
of the crystal phase which was ruled out for the twisted kink-crystal ansatz above.

The next step is to apply the pseudoparticle approach to QCD. Of course, instead of
using a large number of orthonormal wavelet pseudoparticles, as we have implemented
them above, the aim is to reduce the functional basis further and restrict ourselves to
physically relevant fermionic pseudoparticles. Those could be basis functions that have
a significant higher overlap with the QCD Dirac operator which could be achieved by
constructing wavelets that are specifically generated for the functional form we want to
approximate. In this sense wavelets can also be used for gauge fields [28].
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Chapter 6

Summary and Outlook

In this thesis we presented a preliminary study of the pseudoparticle approach based on
wavelets as a regularisation scheme for QCD effective models in order to numerically de-
termine the phase boundary. The algorithm was developed for the discrete Gross-Neveu
model in (1 + 1) dimensions in order to reproduce analytically known results both in the
homogeneous [7] and the inhomogeneous case [8] illustrated in Fig. 4.16 and 4.17 at dis-
crete spatial box sizes of L̂1 = 30. The convergence for wavelet pseudoparticles appears to
be much higher at comparable degrees of freedom and computational costs in comparison
to exploratory research using plane-waves [10]. One explanation is the increased overlap
with the Q†Q-operator which would allow to further decrease the number of basis func-
tions in future investigations.
The pivotal point of our analysis is to augment the approach to (3+1) dimensions regard-
ing the discrete GN4 model. This scenario is especially interesting because a plethora of
reviews [10, 25, 48] conjectures a similar crystal phase for quark-meson models as in (1+1)
dimensions. By using a condensate ansatz (5.1) that only depends on diagonal expansion
terms σk,l,m = σm, we were not able to find evidence of such an emergent crystalline
phase. Furthermore, we checked the stability of the energetic favourability of the restored
phase at intermediate chemical potential as seen in Fig. 5.3. The free energy advantage of
the symmetric phase increases when reaching regimes of higher µ which implies that no
additional phase except the homogeneous and restored one should be present given our
initial choice of ansatz.
The attempt of a detailed comparison of the computational efficiency of the wavelet pseu-
doparticle approach regarding other studies would require calculations of the exact same
quantities within the same model. Throughout our study, we mostly considered rather
small spatial box sizes L̂1 ∼ O(10) such that all approaches for the (1 + 1) dimensional
survey in Ch. 4 were tractable using a desktop machine.
Following our analysis, I devise to study the model in the most general case – a fully
spatially inhomogeneous condensate (5.4) which could have additional contributions that
reduce the effective action further. Similarly this could also be valid when employing a
cubic-centered crystal roposed in Eq. (5.5).
One could also broaden the concept of wavelet pseudoparticles by applying so-called
curvelets [49] which are a higher dimensional generalisation for a functional basis.

6.1 Applications of Wavelets in Field Theories

Based on results in this thesis the applicability of wavelets appears far from fully uncov-
ered and remains worthy of further investigations.
Wavelet expansions bear high potential in field theories because, as we have seen, addi-
tionally to their space-time coordinates also a scale index is included. This allows to set
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6.1. Applications of Wavelets in Field Theories

a scale of measurement to obviate possible divergences in Green’s functions. Also their
versatility could be useful to compute fixed points of renormalisation flows [?]. Especially
for field theories with gauge fields it would be interesting to include local gauge invariance
using covariant derivatives at all scales. For wavelets this was shown in [50], however, for
non-local individual basis functions.
The possibility to explicitly control the scaling prompted other interesting projects in
order to exploit this extra dimension. One can for example construct QFTs based on
a connection between the holographic principle and tensor networks utilising a so-called
Exact Holographic Mapping (EHM) [51, 52]. In pioneering research in this field a (1+ 1)d
scalar bosonic QFT with central charge c = 1 was mapped from the boundary to a bulk
with an emergent AdS geometry therein. The authors were able to generalise the EHM
from the simple Haar wavelet to the whole family of Daubechies wavelets. This gives room
for studies of how long range entanglement quantities such as the central charge are de-
pendent on the emergent dual geometry in the bulk. Possibly an interesting research topic
would be to investigate conformal field theories with central charge different from one,
c 6= 1, i.e. critical Ising- and the 3-state Potts models. Also the question, if it is possible
to extend the procedure to gauge theories on the boundary has not been answered so far.
Lastly, the mentioned wavelet connection to tensor networks in the EHM seems very
promising. While in this thesis we mostly focus on the explicit family of Daubechies
wavelets, there might be a whole different angle to it. Thus, it was conjectured that an ar-
bitrary wavelet family could potentially be constructed from a universal nearest neighbour
circuit. An example are so-called binary Multi-Scale Renormalisation Ansatz (MERA) cir-
cuits [53]. Eventually, this would yield a wide range of new wavelet classes reinforcing the
interwoven nature of wavelets in MERA. Based on these initial ideas, future studies of
the holographic principle in the tensor network formalism via wavelets could give deeper
insight on the connection between these disciplines.
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Appendix A

Quark-Based Models

A.1 Hubbard-Stratonovich Transformation

In general, the Hubbard-Stratonovich transformation [54] is useful when dealing with
theories that exhibit interacting terms like for example the four-fermion coupling in the
GN and NJL models from Ch. 2. The principle of the transformation is simply based on
the integral identity

∫

R

dx exp
{

−πx2 − 2π
1
2ax

}

= exp
{
a2
}
, (A.1)

with a > 0. Its implementation in the partition function is not straightforward if non-
commuting operators are involved. Quadratic interacting operators in the exponent of the
partition function Z (2.7) are eventually traded for a trace over non-interacting fields.

A.2 Feynman Rules of the GN2 Model

We consider the modified Lagrangian after the Hubbard-Stratonovich transformation
(2.11) which then yields the Feynman rules for both the fermion field ψ as well as the
bosonic auxiliary field σ. The latter is represented as dashed lines sketched in Fig. A.1.

=
1

/k

= − iλ
N

= 1

Fig. A.1: Feynman rules for the Gross-Neveu model in (1 + 1) dimensions.
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Appendix B

Q†Q-Regularisation

B.1 B-spline Derivatives

To prove the claim (3.19) for derivatives of B-spline functions, we first inspect the case with
degree N0,k in (3.14). Here all derivatives are zero because of the constant B-splines on
the subintervals. Therefore, the claim holds for j = 0. Let us assume that the derivation
prescription (3.19) is also true for j = 1, 2, . . . , n. We are investigating the formula for
j = n+ 1 such that

∂xNn+1,k(x) = ∂x

(
x− tk

tk+j+1 − tk
Nj,k(x) +

tk+j+2 − x

tk+j+2 − tk+1
Nj,k+1(x)

)

. (B.1)

After differentiation and using the product rule, we encounter further derivatives of of
lower degree j = n

∂xNn+1,k(x) =
x− tk

tk+j+1 − tk
∂xNj,k(x) +

1

tk+j+1 − tj
Nj,k(x)

+
tk+j+2 − x

tk+j+2 − tk+1
∂xNj,k+1(x)−

1

tk+j+2 − tk+1
Nj,k+1(x) . (B.2)

With the premise (3.19), we already know the expression for derivatives at degree j = n

∂xNj,k+1(x) =
j

tk+j+1 − tk+1
Nj−1,k+1(x)−

j

tk+j+2 − tk+2
Nj−1,k+2(x) (B.3)

∂xNj,k(x) =
j

tk+j − tk
Nj−1,k(x)−

j

tk+j+1 − tk+1
Nj−1,k+1(x) . (B.4)

After inserting these expressions into (B.2) and some algebra, we modify the resultant
expression into the form of (3.19) at j = n+ 1

∂xNj+1,k(x) =
j + 1

tk+j+1 − tk
Nj+1,k(x)−

j + 1

tk+j+2 − tk+1
Nj,k+1(x) , (B.5)

which proves the claim of B-spline differentiation in (3.19).

B.2 Wavelet Moments

Latto et al. [37] derive a formula to compute the moments presented in Eq. (3.50)

Mp
k =

∫

R

xpφk(x) , p, k ∈ Z (B.6)
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B. Q†Q-Regularisation

by induction on k with the wavelet filter coefficients {ak}. From Remark 3.2, we already
know that M0

k = 1 so that in succession, we infer conditions on the Mp
0 under the usage

of the dilation equation (3.48)

Mp
0 =

∫

R

xpφ(x) dx

=
√
2
N−1∑

i=0

ai

∫

R

xpφl(2x) dx

= 2
1−2p−2

2

N−1∑

i=0

ai

∫

R

xpφi(x) dx = 2
1−2p−2

2

N−1∑

i=0

aiM
p
i . (B.7)

The r.h.s. of Eq. (B.7) is restated when expressing shifted momenta x 7→ x+k at the same
degree p

Mp
k =

∫

R

(x+ k)pφk(x) dx

=

p
∑

l=0

(
p

l

)

kp−l
∫

R

xlφ(x) dx =

p
∑

l=0

(
p

l

)

kp−lM l
0 . (B.8)

and reinsertion rendersMp
0 to only rely upon different degrees without translation k using

Eq. (3.49)

Mp
0 = 2

1−2p−2

2

N−1∑

i=0

ai

p
∑

m=0

(
p

m

)

ip−mMm
0

= 2
1−2p−2

2

p−1
∑

n=0

(
p

m

)

Mm
0

N−1∑

i=0

aii
p−m + 2

1−2p−2

2

N−1∑

i=0

ai

=

√
2

2(2p − 1)

p−1
∑

m=0

(
p

m

)

Mm
0

N−1∑

i=0

aii
p−m . (B.9)

Eventually all the shifted momenta are recovered in the combination of (B.8) and (B.9)

Mp
k =

√
2

2(2p − 1)

p
∑

l=0

(
p

l

)

kp−l
l−1∑

m=0

(
l

m

)

Mm
0

(
N−1∑

i=0

aii
l−m
)

. (B.10)

B.3 Wavelet Moments Coefficients

With the solution of the proposition in [38] fundamental connection coefficients of the first
derivative order Γ = {Γ0

l }N−2
l=1 from Eq. (3.55) of Daubechies wavelets with N = 2g are

given by their genus. Note that Γ0
0 = 0.

g = 2, Γ =
{
−2

3 ,
1
12

}
(B.11)

g = 3, Γ =
{
−272

365 ,
53
365 ,

16
1095 ,− 1

2920

}
(B.12)

g = 4, Γ =
{
−39296

49553 ,
76113
396424 ,− 1664

49553 ,
2645

1189272 ,
128

743295 ,− 1
1189272

}
(B.13)

g = 5, Γ =
{
− 957310976

1159104017 ,
265226398
1159104017 ,− 735232

13780629 ,
17297069

2318208034 ,

− 1386496
5795520085 ,− 563818

10431936153 ,− 2048
8113728119 ,− 5

18545664272

}
(B.14)

The second order derivative two factor connection coefficients {Ω0
l [g]}N−2

k=1 from (3.57) have
been calculated according to the algorithm explained in Sec. 3.3.4. We present them for
different genera g = 3, . . . , 5 in Tab. B.1. Also the first order trilinear derivative overlap
coefficients {Υk

l }N−2
k,l=1 defined in (3.58) are computed exemplarily for genus g = 3 listed in

Tab. B.2.
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B.3. Wavelet Moments Coefficients

Tab. B.1: The two-factor fundamental connection coefficients (3.57) for {Ω0
l [g]}

N−2
k=1 for Daubechies

wavelets with N = 2g and genus g = 3, . . . , 5.

l Ωl[3] Ωl[4] Ωl[5]

0 −5.2678571429 −4.1659736407 −3.8349943138
1 3.3904761905 2.6420702081 2.4147903512
2 −0.8761904762 −0.6978691044 −0.6495021900
3 0.1142857143 0.1509728996 0.1809535501
4 0.0053571429 −0.0105727278 −0.0299079804
5 0.0000000000 −0.0016303769 0.0007946206
6 0.0000000000 0.0000159216 0.0003671454
7 0.0000000000 0.0000000000 0.0000016565
8 0.0000000000 0.0000000000 0.0000000035
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Tab. B.2: The three-factor fundamental connection coefficients (3.58) for {Υk
l }

N−2
k,l=1 for Daubechies wavelets with N = 2g and genus g = 3.

k Υk
−4 Υk

−3 Υk
−2 Υk

−1 Υk
0

−4 0.0000015241 0.0000329020 −0.0001358901 0.0004451594 −0.0000012296
−3 0.0000329020 0.0014522972 −0.0061773222 0.0204916885 −0.0011881821
−2 −0.0001358901 −0.0061773222 0.0329026887 −0.1252725459 −0.0467741857
−1 0.0004451594 0.0204916885 −0.1252725459 0.4968918011 0.3135877530
0 −0.0000012296 −0.0011881821 −0.0467741857 0.3135877530 0.0000000000
1 0.0000000000 0.0000004887 0.0002498264 0.0378102693 −0.2484459006
2 0.0000000000 0.0000000000 0.0000019494 0.0012518005 −0.0164513443
3 0.0000000000 0.0000000000 0.0000000000 −0.0000004464 −0.0007261486
4 0.0000000000 0.0000000000 0.0000000000 0.0000000000 −0.0000007621

k Υk
1 Υk

2 Υk
3 Υk

4

−4 0.0000000000 0.0000000000 0.0000000000 0.0000000000
−3 0.0000004887 0.0000000000 0.0000000000 0.0000000000
−2 0.0002498264 0.0000019494 0.0000000000 0.0000000000
−1 0.0378102693 0.0012518005 −0.0000004464 0.0000000000
0 −0.2484459006 −0.0164513443 −0.0007261486 −0.0000007621
1 −0.6271755060 0.0874622766 0.0049255216 −0.0000324556
2 0.0874622766 0.0935483714 −0.0207415149 0.0001339407
3 0.0049255216 −0.0207415149 0.0023763642 −0.0004456481
4 −0.0000324556 0.0001339407 −0.0004456481 0.0000024593
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B.4. Hessian Mode Expansion

B.4 Hessian Mode Expansion

In order to derive an expression for the Hessian matrix of the mode expansion first and
second order derivatives of the effective action in the homogeneous vacuum σ̂ = 0 are
listed below with the use of p̂ = p̂(m) and p̂′ = p̂(m′) from (4.48)

∂(Q†Q)

∂Σ2m′
= 2γ0µ̂

(

δk̂1,p̂′+k̂′1
+ δk̂1,−p̂′+k̂′1

)

+ 2I2

M∑

m=−M
m 6=0

σm

(

δk̂1,p̂+p̂′+k̂′1
+ δk̂1,p̂−p̂′+k̂′1

)

(B.15)

∂(Q†Q)

i∂Σ2m′+1
= 2γ0µ̂

(

δk̂1,p̂′+k̂′1
− δk̂1,−p̂′+k̂′1

)

+ 2I2

M∑

m=−M
m 6=0

σm

(

δk̂1,p̂+p̂′+k̂′1
− δk̂1,p̂−p̂′+k̂′1

)

. (B.16)

Following (4.51) and the additivity of the trace, only diagonal elements of the second order
derivative term are relevant such that no mixed derivatives of Σ2m and Σ2m+1 appear. It
is straightforward to check that the inverse of (Q†Q) due to its block-diagonal structure
for σ̂ = 0 becomes

(Q†Q)−1 = δk̂1,k̂′1

(k̂20 + k̂21 + µ̂2)I2 + 2iγ5k̂1µ̂

(k̂20 + k̂21 − µ̂2)2 + (2µ̂k̂0)2
. (B.17)

Together with the second order derivative terms

∂2(Q†Q)

∂Σ2m′∂Σ2m′′
= 2I2

(

δk̂1,p̂′′+p̂′+k̂′1
+ δk̂1,p̂′−p̂′′+k̂′1

+ δk̂1,−p̂′+p̂′′+k̂′1
+ δk̂1,−p̂′−p̂′′+k̂′1

)

, (B.18)

where the differentiation w.r.t. Σ2m+1 has equal diagonal terms, we arrive at the trace of
the first term in the sum of (4.51)

(Q†Q)−1

k̂1,k̂2

∂2(Q†Q)

∂Σm′∂Σm′′

∣
∣
∣
k̂2,k̂1

= 4δk̂1,k̂′1
δp̂′,p̂′′

(k̂20 + k̂21 + µ̂2)I2 + 2iγ5k̂1µ̂

(k̂20 + k̂21 − µ̂2)2 + (2µ̂k̂0)2
. (B.19)

Using the first order derivative terms and the expression for the inverse in (B.17) one
obtains as an intermediate result the product of

Bp̂′

k̂1,k̂′1
= (Q†Q)−1

k̂1,k̂2

∂(Q†Q)

∂Σ2m′

∣
∣
∣
k̂2,k̂′1

=
(k̂20 + k̂21 + µ̂2)I2 + 2iγ5k̂1µ̂

(k̂20 + k̂21 − µ̂2)2 + (2µ̂k̂0)2

×
(

2γ0µ̂+ i(k̂1 − k̂′1)γ1
)(

δk̂1−k̂′1,p̂′
+ δk̂1−k̂′1,−p̂′

)

. (B.20)

Finally, the second term in the sum of (4.51) becomes

Bp̂′

k̂1,k̂2
Bp̂′′

k̂2,k̂′1
= δp̂′,p̂′′

∑

m={−m′,m′}

(

δk̂′1−k̂1,p̂′+p̂
± δk̂1−k̂′1,−p̂′+p̂

)

× (k̂20 + k̂21 + µ̂2)I2 + 2iγ5k̂1µ̂

(k̂20 + k̂21 − µ̂2)2 + (2µ̂k̂0)2

(

2γ0µ̂+ i(k̂1 − (k̂′1 + p̂))γ1

)

× (k̂20 + (k̂′1 + p̂)2 + µ̂2)I2 + 2iγ5(k̂
′
1 + p̂)µ̂

(k̂20 + (k̂′1 + p̂)2 − µ̂2)2 + (2µ̂k0)2

(

2γ0µ̂+ i((k̂′1 + p̂)− k̂′1)γ1
)

. (B.21)
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